×

On the algebraic independence of the values of \(E\)-functions satisfying nonhomogeneous linear differential equations. (English. Russian original) Zbl 0212.39401

Math. Notes 5, 352-358 (1969); translation from Mat. Zametki 5, 587-598 (1969).

MSC:

11J85 Algebraic independence; Gel’fond’s method
Full Text: DOI

References:

[1] C. Siegel, ?Uber einige Anwendungen Diophantischer Approximationen,? Abh. Preuss Acad. Wiss., No. 1, 1-70 (1929-1930). · JFM 56.0180.05
[2] A. B. Shidlovskii, ?On a criterion for the algebraic independence of the values of a class of entire functions,? Dokl. Akad. Nauk, SSSR,100, No. 2, 221-224 (1955). · Zbl 0064.04605
[3] A. B. Shidlovskii, ?On a criterion for the algebraic independence of the values of a class of entire functions,? Izv. Akad. Nauk SSSR, Ser. Matem,23, No. 1, 35-66 (1959).
[4] A. B. Shidlovskii, ?On the transcendence and the algebraic independence of the values of E-functions satisfying second order, linear, nonhomogeneous differential equations,? Dokl. Acad. Nauk SSSR,169, No. 1, 42-45 (1966).
[5] A. B. Shidlovskii, The Transcendence of the Values of E-functions, Proc., Fourth All-Union Mathematical Congress, Leningrad, 1961 [in Russian], Vol. II, Izdat. ?Nauka,? Leningrad (1964), 147-158.
[6] B. L. van der Waerden, Moderne Algebra, Vol. II, Springer, Berlin (1937). [Russian translation], Moscow (1948). · Zbl 0016.33902
[7] I.I. Belogrivov, Candidate’s Dissertation, Moscow (1967).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.