×

zbMATH — the first resource for mathematics

An abstract Volterra equation with applications to linear viscoelasticity. (English) Zbl 0212.45302

MSC:
45D05 Volterra integral equations
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Edelstein, W.S; Gurtin, M.E, Arch. ration. mech. anal., 17, 47-60, (1964)
[2] Odeh, F; Tadjbakhsh, I, Arch. ration. mech. anal., 18, 244-250, (1965)
[3] Levin, J.J, J. differential equations, 4, 176-186, (1968)
[4] Lions, J.L; Magenes, E, ()
[5] Lions, J.L, Équations différentielles-opérationnelles et problèmes aux limites, (1961), Springer-Verlag New York/Berlin · Zbl 0098.31101
[6] Hartman, P, Ordinary differential equations, (1964), Wiley New York · Zbl 0125.32102
[7] Levin, J.J, (), 534-541
[8] Levin, J.J; Nohel, J.A, Mich. math. J., 12, 431-447, (1965)
[9] Corduneanu, C, Compt. rend. acad. sci. Paris, 256, 3564-3567, (1963)
[10] Halanay, A, J. math. anal. appl., 10, 319-324, (1965)
[11] Friedman, A, J. analyse math., 11, 381-413, (1963)
[12] Volterra, V, J. math. pures appl., 7, 249-298, (1928)
[13] Edelstein, W.S, Arch. ration. mech. anal., 22, 121-128, (1966)
[14] Friedman, A; Shinbrot, M, Trans. amer. math. soc., 126, 131-179, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.