zbMATH — the first resource for mathematics

An invariance principle and some convergence rate results for branching processes. (English) Zbl 0212.49505

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
Full Text: DOI
[1] Billingsley, P.: Convergence of probability measures. New York: Wiley 1968. · Zbl 0172.21201
[2] Bühler, W. J.: Ein zentraler Grenzwertsatz für Verzweigungsprozesse. Z. Wahrscheinlichkeitstheorie verw. Geb. 11, 139-141 (1969). · Zbl 0165.19403 · doi:10.1007/BF00531814
[3] Harris, T.E.: The theory of branching processes. Berlin-Göttingen-Heidelberg: Springer 1963. · Zbl 0117.13002
[4] Heyde, C.C.: Some central limit analogues for super-critical Galton-Watson processes. J. appl. Probab. 8, 52-59 (1971). · Zbl 0222.60054 · doi:10.2307/3211837
[5] Ibragimov, I.A.: On the accuracy of the Gaussian approximation to the distribution function of sums of independent variables. Theor. Probab. Appl. 11, 559-579 (1966). · Zbl 0161.15207 · doi:10.1137/1111061
[6] Zolotarev, V.M.: A sharpening of the inequality of Berry-Esseen. Z. Wahrscheinlichkeitstheorie verw. Geb. 8, 332-342 (1967). · Zbl 0157.25501 · doi:10.1007/BF00531598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.