Vaisman, Izu Variétés riemanniennes feuilletées. (French) Zbl 0212.54202 Czech. Math. J. 21(96), 46-75 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 21 Documents MSC: 53C12 Foliations (differential geometric aspects) PDF BibTeX XML Cite \textit{I. Vaisman}, Czech. Math. J. 21(96), 46--75 (1971; Zbl 0212.54202) Full Text: EuDML References: [1] Cartan E.: Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris, 1946. · Zbl 0060.38101 [2] Chern S. S.: Complex manifolds without potential theory. D. Van Nostrand Comp. Princeton, 1967. · Zbl 0158.33002 [3] Goldberg S. I.: Curvature and Homology. Academic Press, New York, 1962. · Zbl 0105.15601 [4] Kodaira K., Spencer D. C.: Multifoliate structures. Ann. of Math. 74, 1961, p. 52-100. · Zbl 0123.16401 [5] Lichnerowicz A.: Théorie globale des connexions et des groupes d’holonomie. Cremonese, Roma, 1955. · Zbl 0116.39101 [6] Miron R., Papuc D. L.: Sur la théorie locale des distributions définies sur un espace à connexion affine. Rev. Roumaine de Math. pures et appl., XII, 1967, p. 537-543. · Zbl 0152.39003 [7] Reinhart B. L.: Harmonie integrals on almost product manifolds. Trans. A.M.S. 88 (1958), p. 243-276. · Zbl 0081.31602 [8] Reinhart B. L.: Foliated manifolds with bundle-like metrics. Ann. of Math., 69, 1959, p. 119–132. · Zbl 0122.16604 [9] Reinhart B. L.: Harmonic integrals on foliated manifolds. Amer. M. J., 81, 1959, p. 529-536, · Zbl 0088.07902 [10] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku M. J., 10, 1958, p. 338–354. · Zbl 0086.15003 [11] Spencer D. C: De Rham theorems and Neumann decompositions associated with partial differential equations. ”Structures feuilletées”, Coll. C.N.R.S., Grenoble, 1963, p. 1-20. [12] Vaisman I.: Sur quelques formules du calcul de Ricci global. Comm. Math. Helv., 41, 1966-67, p. 73-87. · Zbl 0147.41101 [13] Vaisman I.: Sur la cohomologie des variétés riemanniennes feuilletées. C.R. Acad. Sc. Paris, t. 268, Série A, p. 720-723. · Zbl 0175.20302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.