Schwichtenberg, H. Rekursionszahlen und die Grzegorczyk-Hierarchie. (German) Zbl 0213.01801 Arch. Math. Logik Grundlagenforsch. 12, 85-97 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 16 Documents MSC: 03D55 Hierarchies of computability and definability PDF BibTeX XML Cite \textit{H. Schwichtenberg}, Arch. Math. Logik Grundlagenforsch. 12, 85--97 (1969; Zbl 0213.01801) Full Text: DOI EuDML References: [1] Axt, P., Iteration of primitive recursion. Z. math. Logik Grundlagen d. Math.11 (1965), 253–255. · Zbl 0144.00201 [2] Grzegorczyk, A., Some classes of recursive functions. Rozprawy Matematyczne IV, Warszawa 1953. · Zbl 0052.24902 [3] Heinermann, W., Untersuchungen über die Rekursionszahlen rekursiver Funktionen. Dissertation, Münster 1961. [4] Meyer, A. R., Depth of nesting and the Grzegorczyk hierarchy. Notices of the Amer. Math. Soc.12 (1965), 342. [5] Ritchie, D.M., Complexity classification of primitive recursive functions by their machine programs. Notices of the Amer. Math. Soc.12 (1965), 343. [6] Ritchie, R. W., Classes of recursive functions based on Ackermann’s function. Pacific J. Math.15 (1965), 1027–1044. · Zbl 0133.24903 [7] Rödding, D., Klassen rekursiver Punktionen. S. 159–222 in: Proceedings of the Summer School in Logic, Leeds, 1967. Berlin (Springer) 1968. [8] Shepherdson, J. C., and H. E. Sturgis, Computability of recursive functions. J. Ass. Computing Machinery,10 (1963), 217–255. · Zbl 0118.25401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.