×

zbMATH — the first resource for mathematics

On the subspaces of \(L^p\) \((p > 2)\) spanned by sequences of independent random variables. (English) Zbl 0213.19303

MSC:
60B99 Probability theory on algebraic and topological structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bessaga and A. Pelczynski,On bases and unconditional convergence of series in Banach spaces, Studia Math.17 (1958), 151–164. · Zbl 0084.09805
[2] M. M. Day,Normed Linear Spaces, Berlin, Springer-Verlag, 1958. · Zbl 0082.10603
[3] N. Dunford and J. T. Schwartz,Linear Operators I, New York, Intersci. Pub., 1958. · Zbl 0084.10402
[4] M. I. Kadec and A. Pelczynski,Bases, lacunary sequences, and complemented subspaces in the spaces L p , Studia Math.21 (1962), 161–176.
[5] J. Khinchine,Über die diadischen Brüche, Math. Z.18 (1923), 109–116. · JFM 49.0132.01 · doi:10.1007/BF01192399
[6] J. Lindenstrauss,Extension of compact operators, Mem. Amer. Math. Soc.48 (1964). · Zbl 0141.12001
[7] J. Lindenstrauss and A. Pelczynski,Absolutely summing operators in p spaces and their applications, Studia Math.29 (1968), 275–326. · Zbl 0183.40501
[8] J. Lindenstrauss and A. Pelczynski,Contributions to the theory of the classical Banach spaces, to appear.
[9] J. Lindenstrauss and H. P. Rosenthal,Automorphisms in c 0,l 1,and m, Israel J. Math.7 (1969), 227–239. · Zbl 0186.18602 · doi:10.1007/BF02787616
[10] J. Lindenstrauss and H. P. Rosenthal,The p spaces, Israel J. Math.7 (1969), 325–349. · Zbl 0205.12602 · doi:10.1007/BF02788865
[11] M. Loeve,Probability Theory, Princeton, D. Van Nostrand, 1962.
[12] R. E. A. C. Paley,A remarkable series of orthogonal functions, Proc. London Math. Soc.34 (1932), 241–264. · Zbl 0005.24806 · doi:10.1112/plms/s2-34.1.241
[13] A. Pelczynski,On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci., Sér. Math., Astronom. Phys.,6 (1958), 695–696. · Zbl 0085.09406
[14] A. Pelczynski,Projections in certain Banach spaces, Studia Math.19 (1960), 209–228. · Zbl 0104.08503
[15] A. Pelczynski and I. Singer,On non-equivalent bases and conditional bases in Banach spaces, Studia Math.25 (1964), 5–25. · Zbl 0187.05403
[16] H. P. Rosenthal,On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from L p (\(\mu\))to L r (v), J. Functional Analysis2 (1969), 176–214. · Zbl 0185.20303 · doi:10.1016/0022-1236(69)90011-1
[17] H. P. Rosenthal,On totally incomparable Banach spaces, J. Functional Analysis2 (1969), 167–175. · Zbl 0184.15004 · doi:10.1016/0022-1236(69)90010-X
[18] H. P. Rosenthal,Projections onto translation-invariant subspaces of L p (G), Mem. Amer. Math. Soc.63 (1966). · Zbl 0203.43903
[19] I. Singer,Some characterizations of symmetric bases in Banach spaces, Bull. Acad. Polon. Sci., Ser. Math. Astronom Phys.,10 (1962), 185–192. · Zbl 0119.10005
[20] A. Sobczyk,Projections in Minkowski and Banach spaces, Duke Math. J.8 (1944), 78–106. · JFM 67.0403.03 · doi:10.1215/S0012-7094-41-00804-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.