×

A characterization of fine domains for a certain class of Markov processes with applications to Brelot harmonic spaces. (English) Zbl 0213.20101


MSC:

60J25 Continuous-time Markov processes on general state spaces
60J60 Diffusion processes
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bauer, H., Harmonische RÄume und ihre Potentialtheorie, Lecture Notes in Math., vol.22 (1966), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York
[2] - Harmonic spaces and associated Markov processes, p. 24-67 of Potential theory (ed. by M. Brelot). C.I.M.E. (1970).
[3] Blumenthal, R. M.; Getoor, R. K., Markov processes and potential theory (1968), New York: Academic Press, New York · Zbl 0169.49204
[4] Brelot, M., Lectures on potential theory (1960), Bombay: Tata Institute, Bombay · Zbl 0098.06903
[5] Courrège, P., Priouret, P.: Axiomatique de problème de Dirichlet et processus de Markov. Séminaire Brelot-Choquet-Deny. Théorie du Potentiel, 8, nℴ 8, 48 pages (1963/64). · Zbl 0132.33803
[6] Fuglede, B.: Proprietés de connexion en topologie fine. Preprint, Copenhagen Univ., 1969.
[7] - Fine connectivity and finely harmonic functions. To appear in Proc. Nice Congress.
[8] Hansen, W., Konstruktion von Halbgruppen und Markoffschen Prozessen, Inventiones math., 3, 179-214 (1967) · Zbl 0158.12803
[9] Meyer, P. A., Probability and potentials (1966), Boston: Blaisdell, Boston · Zbl 0138.10401
[10] Meyer, P. A., Processus de Markov, Lecture Notes in Math., vol. 26 (1967), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0189.51403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.