×

zbMATH — the first resource for mathematics

Cubes with knotted holes. (English) Zbl 0213.25005

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57Q45 Knots and links in high dimensions (PL-topology) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2) 28 (1926/27), no. 1-4, 562 – 586. · JFM 53.0549.02 · doi:10.2307/1968399 · doi.org
[2] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be \?³, Ann. of Math. (2) 68 (1958), 17 – 37. · Zbl 0081.39202 · doi:10.2307/1970041 · doi.org
[3] R. H. Bing, Correction to ”Necessary and sufficient conditions that a 3-manifold be \?³”, Ann. of Math. (2) 77 (1963), 210. · Zbl 0115.17304 · doi:10.2307/1970205 · doi.org
[4] -, Some aspects of the topology of \( 3\)-manifolds related to the Poincaré conjecture, Lectures on Modern Math., vol. 2, Wiley, New York, 1964, pp. 93-128. MR 30 #2474.
[5] -, Computing the fundamental group of the complement of curves, Washington State University, Pullman, Wash., 1965.
[6] Garrett Birkhoff and Saunders Mac Lane, A survey of modern algebra, Third edition, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1965. · Zbl 0061.04802
[7] A. C. Conner, Splittable knots (preprint).
[8] H. S. M. Coxeter, The abstract groups \?^\?,\?,\?, Trans. Amer. Math. Soc. 45 (1939), no. 1, 73 – 150. · Zbl 0020.20703
[9] H. S. M. Coxeter, The abstract group \?^3,7,16, Proc. Edinburgh Math. Soc. (2) 13 (1962), 47 – 61. · Zbl 0118.03702 · doi:10.1017/S0013091500014486 · doi.org
[10] R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120 – 167. · Zbl 1246.57002
[11] H. Gluck, Ph.D. Thesis, Princeton University, Princeton, N. J., 1961.
[12] John Hempel, Construction of orientable 3-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 207 – 212. · Zbl 1246.57043
[13] John Hempel, A simply connected 3-manifold is \?³ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154 – 158. · Zbl 0118.18802
[14] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531 – 540. · Zbl 0106.37102 · doi:10.2307/1970373 · doi.org
[15] Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791 – 798. · Zbl 0117.41001 · doi:10.2307/2372940 · doi.org
[16] Dieter Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131 – 141 (German). · Zbl 0183.52102 · doi:10.1007/BF01136030 · doi.org
[17] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281 – 299. · Zbl 0078.16305 · doi:10.1112/plms/s3-7.1.281 · doi.org
[18] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1 – 26. · Zbl 0078.16402 · doi:10.2307/1970113 · doi.org
[19] H. Poincaré, Second complément a l’analysis situs, Proc. London Math. Soc. (2) 32 (1900), 277-308. · JFM 31.0477.10
[20] -, Cinquieme complément a l’analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110. · JFM 35.0504.13
[21] H. F. Trotter, Non-invertible knots exist, Topology 2 (1963), 275 – 280. · Zbl 0136.21203 · doi:10.1016/0040-9383(63)90011-9 · doi.org
[22] Andrew H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503 – 528. · Zbl 0108.36101 · doi:10.4153/CJM-1960-045-7 · doi.org
[23] J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12 (1937), 63-71. · Zbl 0016.04402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.