×

zbMATH — the first resource for mathematics

On the modified logarithmic potential. (English) Zbl 0213.38301

MSC:
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] G. Fichera: Una introduzione alla teoria delle equazioni integrali singolari. Rend. Mat. e Appl. 77 (1958), 82-191. · Zbl 0097.08602
[2] J. Král: Some inequalities concerning the cyclic and radial variations of a plane path-curve. Czech. Math. Journal 14 (89), 1964, 271–280.
[3] J. Král: Non-tangential limits of the logarithmic potential. ibid. 455 - 482. · Zbl 0137.30301
[4] J. Král: Angular limit values of integrals of the Cauchy type. (Russian), Doklady Akad. nauk SSSR 155 (1964), 32-34.
[5] J. Král: Potential theory I. (Czech; mimeographed lecture notes), Státní pedagogické nakladatelství Praha, 1965.
[6] J. Lukeš: Lebesgueův integrál. Čas. pro pěst. mat. 91 (1966), 371 - 383.
[7] J. Lukeš: A note on integrals of the Cauchy type. Comment. Math. Univ. Carolinae 9 (1968), 563-570.
[8] J. Mařík: Transformation of one-dimensional integrals. (Russian), Čas. pro pěst. mat. 82 (1957), 93-98.
[9] N. J. Muskhelišvili: Singular integral equations. (Russian), Moscow 1962.
[10] T. Radó, P. V. Reichelderfer: Continuous transformations in analysis. Springer-Verlag 1955. · Zbl 0067.03506
[11] S. Saks: Theory of the integral. New York 1964. · Zbl 1196.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.