Williams, R. F. Classification of symbol spaces of finite type. (English) Zbl 0213.50403 Bull. Am. Math. Soc. 77, 439-443 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents MSC: 54H20 Topological dynamics (MSC2010) PDFBibTeX XMLCite \textit{R. F. Williams}, Bull. Am. Math. Soc. 77, 439--443 (1971; Zbl 0213.50403) Full Text: DOI References: [1] V. Alekseev, Quasirandom dynamical systems. I, II, III, Mat. Sb. 76 (118) (1968), 72-134 = Math. USSR Sb. 5 (1968), 73-128; ibid. 77 (119) (1968), 545-601 = ibid. 6 (1968), 505-560; ibid. 78 (120) (1969), 3-50 = ibid. 7 (1969), 1-43. [2] Rufus Bowen, Markov partitions for Axiom \? diffeomorphisms, Amer. J. Math. 92 (1970), 725 – 747. · Zbl 0208.25901 · doi:10.2307/2373370 [3] Rufus Bowen, Topological entropy and axiom \?, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 23 – 41. [4] R. Bowen and O. E. Lanford III, Zeta functions of restrictions of the shift transformation, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 43 – 49. · Zbl 0211.56501 [5] F. Gantmacher, The theory of matrices, GITTL, Moscow, 1953; English transl., vol. 2, Chelsea, New York, 1959. MR 16, 438; MR 21 #6372c. [6] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320 – 375. · Zbl 0182.56901 · doi:10.1007/BF01691062 [7] Harold Marston Morse, A One-to-One Representation of Geodesics on a Surface of Negative Curvature, Amer. J. Math. 43 (1921), no. 1, 33 – 51. · JFM 48.0786.05 · doi:10.2307/2370306 [8] William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0175.34001 [9] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55 – 66. · Zbl 0127.35301 [10] У-диффеоморпхисмс, Функционал. Анал. и Прилоžен 2 (1968), но. 1, 64 – 89 (Руссиан). [11] Stephen Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63 – 80. [12] R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 341 – 361. [13] R. F. Williams, Classification of symbol spaces of finite type, Bull. Amer. Math. Soc. 77 (1971), 439 – 443. · Zbl 0213.50403 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.