M-groups and the supersolvable residual. (English) Zbl 0214.04303


20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20C15 Ordinary representations and characters
20F17 Formations of groups, Fitting classes
20E28 Maximal subgroups
Full Text: DOI EuDML


[1] Brauer, R.: On the connection between the ordinary and modular characters of groups of finite order. Ann. of Math.42, 926-935 (1941). · Zbl 0061.03701
[2] Carter, R. W., and T. Hawkes: Thet-normalizers of a finite soluble group. Journal of Alg.5, 175-202 (1967). · Zbl 0167.29201
[3] Clifford, A. H.: Representations induced in an invariant subgroup. Ann. of Math.38, 533-550 (1937). · Zbl 0017.29705
[4] Curtis, C.W., and I. Reiner: Representation theory of finite groups and associative algebras. New York: Interscience 1962. · Zbl 0131.25601
[5] Dornhoff, L.:M-groups and 2-groups. Math. Z.100, 226-256 (1967). · Zbl 0157.35503
[6] Gallagher, P.X.: Group characters and normal Hall subgroups. Nagoya Math. J.21, 223-230 (1962). · Zbl 0114.25603
[7] Gasch?tz, W.: Zur Theorie der endlichen aufl?sbaren Gruppen. Math. Zeitschr.80, 300-305 (1963). · Zbl 0111.24402
[8] Hall, P., and G. Higman: On thep-length ofp-soluble groups and reduction theorems for Burnside’s problem. Proc. London Math. Soc.6, 1-42 (1956). · Zbl 0073.25503
[9] Higman, G.: Suzuki 2-groups: III. J. Math.7, 79-96 (1963). · Zbl 0112.02107
[10] Ito, N.: On a theorem of H. Blichfeldt. Nagoya Math. Journal5, 75-78 (1953).
[11] Lubeseder, V.: Construction of formations in finite soluble groups. (Thesis, University of Kiel 1965).
[12] Rigby, J.F.: Primitive linear groups containing a normal nilpotent subgroup larger than the centre of the group. J. London Math. Soc.35, 389-400 (1960). · Zbl 0096.25205
[13] Shult, E.: A note on splitting in solvable groups. Proc. Amer. Math. Soc.17, 318-320 (1966). · Zbl 0142.26002
[14] Scott, W.R.: Group theory. New Jersey: Prentice-Hall 1964. · Zbl 0126.04504
[15] Seitz, G.M.:M-Groups and the supersolvable residual. Thesis, University of Oregon (1968).
[16] Taketa, K.: ?ber die Gruppen, deren Darstellungen sich s?mtlich auf monomiale Gestalt transformieren lassen. Proc. Jap. Imp. Acad.6, 31-33 (1930). · JFM 56.0133.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.