zbMATH — the first resource for mathematics

A new finite simple group with abelian Sylow 2-subgroups and its characterization. (English) Zbl 0214.28003

20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
Full Text: DOI
[1] Brauer, K, Investigations on group characters, Ann. math., 42, 936-958, (1941) · Zbl 0061.03702
[2] Brauer, R, On some special cases of Schreier’s conjecture, (), 58-59
[3] Brauer, R, Some applications of the theory of blocks of characters of finite groups I, J. algebra, 1, 152-167, (1964) · Zbl 0214.28101
[4] Brauer, R; Fowler, K.A, On groups of even order, Ann. math., 62, 565-583, (1955) · Zbl 0067.01004
[5] Burnside, W, Theory of groups of finite order, (1955), Dover publications · Zbl 0064.25105
[6] Coxeter, H.S.M, The abstract groups Gm,n,p, Trans. amer. math. soc., 45, 73-150, (1939) · Zbl 0020.20703
[7] Dickson, L.E, Linear groups, (1958), New York
[8] Gorenstein, D; Walter, J.H, On finite groups with dihedral Sylow 2-subgroups, Illinois J. math., 6, 553-593, (1962) · Zbl 0126.05202
[9] Janko, Z, A new finite simple group with abelian 2-Sylow subgroups, (), 657-658 · Zbl 0142.25903
[10] \scJanko, Z. A characterization of the smallest Ree’s group associated with the simple Lie algebra of type G2. J. Algebra, in press.
[11] \scJanko, Z., and Thompson, J. G. On a class of finite simple groups of Ree. J. Algebra, in press.
[12] Schur, I, Untersuchungen über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. für die reine angew. math., 132, 85-137, (1907) · JFM 38.0174.02
[13] Suzuki, M, On characterizations of linear groups. I, Trans. amer. math. soc., 92, 191-204, (1959) · Zbl 0089.01605
[14] Suzuki, M, Applications of group characters, (), 88-99
[15] Zassenhaus, H, (), 1956
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.