Babuška, Ivo Error-bounds for finite element method. (English) Zbl 0214.42001 Numer. Math. 16, 322-333 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 391 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation PDF BibTeX XML Cite \textit{I. Babuška}, Numer. Math. 16, 322--333 (1971; Zbl 0214.42001) Full Text: DOI EuDML References: [1] Nečas, J.: Sur la coercivité des formes sesquilinéaires elliptiques. Rev. Roumaine de Math. Pure et App.9, No. 1, 47–69 (1964). [2] —- Sur une méthode pour résoudre les equations dérivées partielles du type elliptique voisine de la variationnelle. Ann. Sc. Norm. Sup., Pisa, Ser. III,16, 4, 305–326 (1962). · Zbl 0112.33101 [3] Nirenberg, L.: Remarks on strongly elliptic partial differential equations. Comm. Pure App. Math.8, 649–675 (1955). · Zbl 0067.07602 [4] Kantorovich, L. V., Akilov, G. P.: Functional analyses in normed spaces [translated from Russian]. New York: McMillan Press 1964. · Zbl 0127.06104 [5] Aronszajn, H.: Boundary value of function with finite Dirichlet integral. Conference on Partial Differential Equations Studies in Eigenvalue Problems, No. 14, University of Kansas, 1955. · Zbl 0068.08201 [6] Slobodeckii, M. I.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningr. gos. Univ.197, 54–112 (1958). [7] Lions, J. L., Magenes, E.: Problèmes aux limites non homogèènes. IV. Ann. Se. Norm. Sup. Pisa, Ser. III,15, 4, 311–326 (1961). · Zbl 0115.31302 [8] –, – Problèmes aux limites non homogènes. Paris: Dunod 1968. [9] Krein, S. G., Petunin, Yu. I.: Scales of Banach spaces. Russian Math. Surveys21, No. 2, 85–160 (1966). · Zbl 0173.15702 [10] Babuška, L : Approximation by the hill functions. To appear. Technical Note BN-648, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in CMUC. [11] Laasonen, P.: On the degree of convergence of discrete approximation for the solution of the Dirichlet problem. Ann. Acad. Sci. Finn. Ser. A,I, No. 246 (1957) · Zbl 0103.10502 [12] —- On the truncation error of discrete approximations into the solution of Dirichlet problems in a domain with corners. J. Assoc. Comp. Math.5, 32–38 (1958) · Zbl 0086.32703 [13] Veidinger, L.: On the order of convergence of finite difference approximations to the solution of the Dirichlet problem in a domain with corners. Studia Scient. Math. Hung.3, No. 1-3, 337–343 (1968). · Zbl 0165.18204 [14] Ciarlet, P.: Discrete variational Green’s function. To appear. · Zbl 0194.12703 [15] Babuška, I., Práger, M., Vitásek, E.: Numerical processes in differential equations. New York: J. Wiley 1966. · Zbl 0156.16003 [16] Volkov, E. A.: Method of composit meshes for bounded and unbounded domain with piecewise smooth boundary (in Russian). Proceedings of the Steklov institute of Mathematics No. 96, 117–148 (1968). [17] Babuška, L : The rate of convergence for the finite element method. Technical Note BN-646, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in SIAM J. Num. Anal. [18] – Finite element method for domains with corners. Technical Note BN-636, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in Computing. · Zbl 0224.65031 [19] – The finite element method for elliptic equations with discontinuous coefficients. Technical Note BN-631, 1969, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in Computing. [20] – The finite element method for elliptic differential equations. Technical Note Note BN-653, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in SYNSPADE Proceedings (Symposium on the Numerical Solution Solution of Partial Differential Equations), May 11–15, 1970, University of Maryland. [21] – Computation of derivatives in the finite element method. Technical Note BN-650, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. To appear in CMUC. · Zbl 0219.65089 [22] – Segethová, J., Segeth, K.: Numerical experiments with finite element method I. Technical Note BN-669, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. [23] – The finite element method for unbounded domains I. Technical Note BN-670, 1970, University of Maryland, Institute for Fluid Dynamics and Applied Mathematics. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.