×

On the differentiable pinching problem. (English) Zbl 0214.48902


MSC:

53C20 Global Riemannian geometry, including pinching

References:

[1] Berger, M.: An extension of Rauch’s metric comparison theorem and some applications. Illinois J. of Math.6, 700–712 (1962). · Zbl 0113.37003
[2] Gromoll, D.: Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären. Math. Ann.164, 353–371 (1966). · Zbl 0135.40301 · doi:10.1007/BF01350046
[3] —- Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. Berlin-Heidelberg-New York: Springer 1968. · Zbl 0155.30701
[4] Klingenberg, W.: Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Comment. Math. Helv.34, 35–54 (1961). · Zbl 0133.15005
[5] Rauch, H.: A contribution to differential geometry in the large. Ann. of Math.54, 38–55 (1951). · Zbl 0043.37202 · doi:10.2307/1969309
[6] Ruh, E.: Curvature and differentiable structures on spheres. Comment. Math. Helv.46, 127–136 (1971). · Zbl 0206.50704 · doi:10.1007/BF02566833
[7] Shikata, Y.: On the differentiable pinching problem. Osaka Math. J.4, 279–287 (1967). · Zbl 0155.31601
[8] Toponogov, V.A.: Riemannian spaces having their curvature bounded by a positive number. A.M.S. Transl.37, 291–336 (1964). · Zbl 0136.42904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.