×

A generalization of the Ascoli theorem and an application to functional differential equations. (English) Zbl 0215.19501


MSC:

46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
46A50 Compactness in topological linear spaces; angelic spaces, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrosetti, A, Un teorema di esistenza per le equazioni differenziali sugli spazi di Banach, (), 349-361 · Zbl 0174.46001
[2] Ascoli, G, Le curve limite di una varieta data di curve, Mem. accad. lincei, 18, 521-586, (1883) · JFM 16.0342.02
[3] Bellman, R; Cooke, K, Differential-difference equations, (1963), New York
[4] Darbo, G, Punti uniti in trasformazioni a condiminio non compatto, (), 84-92 · Zbl 0064.35704
[5] Driver, R, Existence and continuous dependence of solutions of a neutral functional-differential equation, Arch. rat. mech. anal., 19, 144-166, (1965) · Zbl 0148.05703
[6] Goldenstein, L; Markus, A, Math. reviews, 35, 789, (Jan.-March, 1968), (p. 153)
[7] Hale, J; LaSalle, J, Differential equations and dynamical systems, (1967), New York · Zbl 0211.39602
[8] Kuratowski, C, Sur LES espaces complets, Fund. math., 15, 301-309, (1930) · JFM 56.1124.04
[9] Michael, E, Topologies on spaces of subsets, Trans. amer. math. soc., 71, 152-182, (1951) · Zbl 0043.37902
[10] Oguztorelli, M, Time-lag control systems, (1966), New York
[11] Nussbaum, R, The fixed point index and fixed point theorems for k-set-contractions, (1969), University of Chicago, Unpublished Ph.D. dissertation · Zbl 0174.45402
[12] Nussbaum, R, The fixed point index and asymptotic fixed point theorems for k-set-contractions, Bull. amer. math. soc., 75, 490-495, (1969) · Zbl 0174.45402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.