×

zbMATH — the first resource for mathematics

Scorza-Dragoni’s theorem for unbounded set-valued functions and its applications to control problems. (English) Zbl 0215.21601

MSC:
49J99 Existence theories in calculus of variations and optimal control
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Goodman G. S.: On a theorem of Scorza-Dragoni and its application to optimal control, Mathematical Theory of Control, ed. by A. V. Balakrishnan and L. V. Neustadt, Academic Press, 1967, pp. 222 - 233, New York.
[2] Jacobs M. Q.: Remark on some recent extensions of Filippov’s implicit function lemma. SIAM Journal on Control 5 (1967), 622-627. · Zbl 0189.16001
[3] Castaing, Ch.: Sur les multi-application measurables. Rev. Francaise d’informatique et de Recherche Operationelle 1 (1967).
[4] Scorza-Dragoni G.: Una theorema sulle funzioni continue rispetto ad una i misurable rispetto ad un altra variabile. Rend. Semin. mat. Univ. Padova 17 (1948), 102-106. · Zbl 0032.19702
[5] Cesari L.: Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. Trans. Amer. Math. Soc., 124 (1966), 369 - 412, 413-429. · Zbl 0145.12501
[6] Cesari L.: Existence theorems for optimal controls of Mayer type. SIAM Journal on Control. · Zbl 0174.14301
[7] Olech C.: Existence theorems for optimal problems with vector-valued cost function. Brown University, Center for Dynamical Systems Technical Report, 67 - 6) · Zbl 0179.14002
[8] Pliś A.: Remark on measurable set-valued functions. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys. 9 (1961), 857 - 859. · Zbl 0101.04303
[9] Brunovský P.: On the necessity of a certain convexity condition for lower closure of control problems. SIAM Journal on Control, 6 (1968), 174-185. · Zbl 0176.07001
[10] Hukuhara M.: Intégration des applications measurables dont la valeur est convexe. Funkcialaj Ekvacioj 10 (1967), 205-223. · Zbl 0161.24701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.