On uniform vector bundles. (English) Zbl 0215.43202


32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
Full Text: DOI EuDML


[1] Atiyah, M. F.: Vector bundles over an elliptic curve. Proc. London Math. Soc.7 (3), 414-452 (1953). · Zbl 0084.17305 · doi:10.1112/plms/s3-7.1.414
[2] Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Publications Math. I.H.E.S.5, 233-292 (1960). · Zbl 0100.08001
[3] Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math.79, 121-138 (1957). · Zbl 0079.17001 · doi:10.2307/2372388
[4] Hirzebruch, F.: Topological methods in algebraic geometry. Grundl. Math. Wiss. 131. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0138.42001
[5] Kodaira, K., Spencer, D. C.: On deformations of complex structures 2. Ann. Math.67, 403-465 (1958). · Zbl 1307.14016 · doi:10.2307/1969867
[6] Potters, J. A. M.: Classification of almost homogeneous complex surfaces. Thesis Leiden 1968.
[7] Remmert, R., Van de Ven, T.: Über holomorphe Abbildungen projektiv-algebraischer Mannigfaltigkeiten auf komplexe Räume. Math. Ann.142, 453-486 (1961). · Zbl 0099.16403 · doi:10.1007/BF01450937
[8] Schwarzenberger, R. L. E.: Vector bundles on the projective plane. Proc. London Math. Soc.11 (3), 623-640 (1961). · Zbl 0212.26004 · doi:10.1112/plms/s3-11.1.623
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.