Mumford, David Theta characteristics of an algebraic curve. (English) Zbl 0216.05904 Ann. Sci. Éc. Norm. Supér. (4) 4, 181-192 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 143 Documents MSC: 14H60 Vector bundles on curves and their moduli × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] N. BOURBAKI , Éléments de Mathématiques , Hermann, Paris. · Zbl 0129.24508 [2] P. DELIGNE and D. MUMFORD , Irreducibility of the space of curves , Publ. I. H. E. S., vol. 36, 1969 . Numdam | MR 41 #6850 | Zbl 0181.48803 · Zbl 0181.48803 · doi:10.1007/BF02684599 [3] A. GROTHENDIECK , Groupe de Brauer , in Dix Exposés, North Holland, 1968 . Zbl 0193.21503 · Zbl 0193.21503 [4] KRAZER , Lehrburch der theta-funktionen , Teubner, 1903 . [5] S. LANG , Abelian varieties , Wiley-Interscience, 1959 . MR 21 #4959 | Zbl 0098.13201 · Zbl 0098.13201 [6] S. LANG , On quasi-algebraic closure (Annals of Math., vol. 55, 1952 , p. 373). MR 13,726d | Zbl 0046.26202 · Zbl 0046.26202 · doi:10.2307/1969785 [7] D. MUMFORD , Abelian varieties , Oxford University Press, 1970 . MR 44 #219 | Zbl 0223.14022 · Zbl 0223.14022 [8] D. MUMFORD , On the equations defining abelian varieties (Inv. Math., vol. 1, 1966 ). MR 34 #4269 | Zbl 0219.14024 · Zbl 0219.14024 · doi:10.1007/BF01389737 [9] B. RIEMANN , Collected Works , Dover edition, 1953 . · JFM 08.0231.03 [10] C. S. SESHADRI , Space of unitary vector bundles on a compact Riemann surface (Annals of Math., vol. 85, 1967 ). MR 38 #1693 | Zbl 0173.23001 · Zbl 0173.23001 · doi:10.2307/1970444 [11] A. WEIL , Variétés abéliennes , Hermann, Paris, 1948 . Zbl 0037.16202 · Zbl 0037.16202 [12] WIRTINGER , Untersuchungen über thetafunktionen , Teubner, 1895 . JFM 26.0514.01 · JFM 26.0514.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.