×

zbMATH — the first resource for mathematics

Virtual groups and group actions. (English) Zbl 0216.14902

MSC:
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
22A22 Topological groupoids (including differentiable and Lie groupoids)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auslander, L; Moore, C.C, Unitary representations of solvable Lie groups, Mem. amer. math. soc., No. 62, (1966) · Zbl 0204.14202
[2] {\scG. M. Bergmann}, Transitivity vs. strict ergodicity, unpublished.
[3] Birkhoff, G, ()
[4] Blattner, R, Review of: ergodic theory, group theory, and differential geometry, Math. rev., 29, 450, (1965), by G. W. Mackey
[5] Dieudonné, J, Sur le théorème de Lebesgue-Nikodym (III), Ann. univ. Grenoble NS, 23, 25-53, (1948) · Zbl 0030.16002
[6] Dixmier, J, Dual et quasi-dual dune algèbre de Banach involutive, Trans. amer. math. soc., 104, 278-283, (1962) · Zbl 0112.07302
[7] Dunford, N; Schwartz, J.T, Linear operators, part I: general theory, (1958), Interscience New York
[8] Ehresmann, C, Gattungen von lokalen struktures, Über. Deutsch. math. verein, 60, 49-77, (1957) · Zbl 0097.37803
[9] Fell, J.M.G, A haúsdorff topology for the closed subsets of a locally compact non-Hausdorff space, (), 472-476 · Zbl 0106.15801
[10] Halmos, P.R, The decomposition of measures, Duke math. J., 8, 386-392, (1941) · Zbl 0025.14901
[11] Halmos, P.R, On a theorem of Dieudonné, (), 38-42 · Zbl 0031.40701
[12] Halmos, P.R, Measure theory, (1950), D. Van Nostrand Princeton · Zbl 0117.10502
[13] Halmos, P.R; von Neumann, J, Operator methods in classical mechanics, II, Ann. math., 43, 332-350, (1942) · Zbl 0063.01888
[14] Kuratowski, C, ()
[15] Mackey, G.W, A theorem of stone and von Neumann, Duke math. J., 16, 313-326, (1949) · Zbl 0036.07703
[16] Mackey, G.W, Induced representations of locally compact groups, I, Ann. math., 2, 101-139, (1952) · Zbl 0046.11601
[17] Mackey, G.W, Borel structures in groups and their duals, Trans. amer. math. soc., 85, 265-311, (1957)
[18] Mackey, G.W, Unitary representations of group extensions, I, Acta math., 99, 265-311, (1958) · Zbl 0082.11301
[19] Mackey, G.W, Point realizations of transformation groups, Illinois J. math., 6, 327-335, (1962) · Zbl 0178.17203
[20] Mackey, G.W, Infinite dimensional group representations, Bull. amer. math. soc., 69, 628-686, (1963) · Zbl 0136.11502
[21] Mackey, G.W, Ergodic theory, group theory, and differential geometry, (), 1184-1191 · Zbl 0178.38801
[22] Mackey, G.W, Group representations and non-commutative harmonic analysis, () · Zbl 0124.07002
[23] Mackey, G.W, Ergodic theory and virtual groups, Math. ann., 166, 187-207, (1966) · Zbl 0178.38802
[24] Mackey, G.W, Virtual groups, (), 331-364 · Zbl 0178.38802
[25] MacLane, S, Homology, (1963), Academic Press New York · Zbl 0133.26502
[26] Mitchell, B, Theory of categories, (1965), Academic Press New York
[27] {\scC. C. Moore}, Extensions and low dimensional cohomology theory of locally compact groups. III, Trans. Amer. Math. Soc., to appear. · Zbl 0131.26902
[28] von Neumann, J, Einige Sätze über messbare abbildungen, Ann. math., 33, 574-586, (1932) · Zbl 0005.05603
[29] von Neumann, J, On rings of operators, reduction theory, Ann. math., 2, 401-485, (1949) · Zbl 0034.06102
[30] Parthasarathy, K.R, Probability measures on metric spaces, (1967), Academic Press New York · Zbl 0153.19101
[31] Rohlin, V.A, On the fundamental ideas of measure theory, Amer. math. soc. transl., 10, 1-54, (1962)
[32] Varadarajan, V.S, Geometry of quantum theory, (1970), Van Nostrand Reinhold Co New York · Zbl 0194.28802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.