×

zbMATH — the first resource for mathematics

Tensor product bases and tensor diagonals. (English) Zbl 0216.16203

MSC:
46M05 Tensor products in functional analysis
46B28 Spaces of operators; tensor products; approximation properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151 – 164. · Zbl 0084.09805
[2] C. Bessaga and J. R. Retherford, Lectures on nuclear spaces and related topics, Lecture Notes, Louisiana State University, Baton Rouge, La., rev. version (to appear).
[3] Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906 – 911. · Zbl 0080.31204
[4] M. M. Day, Normed linear spaces, 2nd ed., Ergebnisse der math. und ihrer Grenzgebiete, Heft 21, Academic Press, New York and Springer-Verlag, Berlin and New York, 1962. MR 26 #2847. · Zbl 0100.10802
[5] Nelson Dunford and Robert Schatten, On the associate and conjugate space for the direct product of Banach spaces, Trans. Amer. Math. Soc. 59 (1946), 430 – 436. · Zbl 0063.01186
[6] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. · Zbl 0084.10402
[7] Ciprian Foiaş and Ivan Singer, On bases in \?([\?,1]) and \?\textonesuperior ([0,1]), Rev. Roumaine Math. Pures Appl. 10 (1965), 931 – 960. · Zbl 0141.31102
[8] B. R. Gelbaum and J. Gil de Lamadrid, Bases of tensor products of Banach spaces, Pacific J. Math. 11 (1961), 1281 – 1286. · Zbl 0106.08604
[9] M. M. Grinblyum, On the representation of a space of type \? in the form of a direct sum of subspaces, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 749 – 752 (Russian).
[10] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), 140 (French). · Zbl 0064.35501
[11] J. R. Holub, Tensor product bases and tensor diagonals, Trans. Amer. Math. Soc. 151 (1970), 563 – 579. · Zbl 0216.16203
[12] J. R. Holub and J. R. Retherford, Some curious bases for \?\(_{0}\) and \?[0,1], Studia Math. 34 (1970), 227 – 240. · Zbl 0192.46904
[13] H. F. Joiner, Schauder bases and topological tensor products, Dissertation, Florida State University, Tallahassee, Fla., 1968.
[14] C. W. McArthur and J. R. Retherford, Some applications of an inequality in locally convex spaces, Trans. Amer. Math. Soc. 137 (1969), 115 – 123. · Zbl 0176.42602
[15] A. Pełczyński and W. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961 – 966. · Zbl 0154.14404
[16] J. R. Retherford, Shrinking bases in Banach spaces, Amer. Math. Monthly 73 (1966), 841 – 846. · Zbl 0161.10304
[17] J. R. Retherford, A semishrinking basis which is not shrinking, Proc. Amer. Math. Soc. 19 (1968), 766. · Zbl 0172.39702
[18] Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. · Zbl 0141.30503
[19] Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, no. 26, Princeton University Press, Princeton, N. J., 1950. · Zbl 0039.33503
[20] I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/1962), 351 – 369. · Zbl 0114.30903
[21] I. Singer, Weak* bases in conjugate Banach spaces. II, Rev. Math. Pures Appl. (Bucarest) 8 (1963), 575 – 584. · Zbl 0143.35003
[22] M. Zippin, A remark on bases and reflexivity in Banach spaces, Israel J. Math. 6 (1968), 74 – 79. · Zbl 0157.20101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.