zbMATH — the first resource for mathematics

Some estimates of solutions of degenerate \((k,0)\)-elliptic equations. (English. Russian original) Zbl 0216.37901
Math. Notes 8(1970), 820-826 (1971); Translation from Mat. Zametki 8, 625-634 (1970).

35J70 Degenerate elliptic equations
Full Text: DOI
[1] S. N. Kruzhkov, ?Some properties of solutions of elliptic equations,? Dokl. Akad. Nauk SSSR, 150, No. 3, 470?473 (1963). · Zbl 0148.35701
[2] S. N. Kruzhkov, ?Some properties of solutions of elliptic equations,? Matem. Sb.,65, No. 4, 522?570 (1964). · Zbl 0178.45901
[3] L. P. Kuptsov, ?A space of functions whose first derivatives in variable directions raised to the p-th power are integrable,? Trudy Matem. In-ta, Akad. Nauk SSSR, 103, 96?116 (1968). · Zbl 0205.12701
[4] L. P. Kuptsov, ?Harnack’s inequality for generalized solutions of degenerate second-order elliptic equations,? Diff. Uravneniya,4, No. 1, 110?122 (1968).
[5] S. N. Kruzhkov and L. P. Kuptsov, ?Harnack’s inequality for solutions of second-order elliptic differential equations,? Vestnik Mosk. Un-ta, Ser. Matem., No. 3, 3?14 (1964).
[6] F. John and L. Nirenberg, ?On functions of bounded mean oscillations,? Comm. Pure Appl. Math.,14, 415?426 (1961). · Zbl 0102.04302 · doi:10.1002/cpa.3160140317
[7] J. Serrin, ?Local behavior of solutions of quasilinear equations,? Acta Math. 111, Nos. 3?4, 247?302 (1964). · Zbl 0128.09101 · doi:10.1007/BF02391014
[8] N. S. Trudinger, ?On Harnack-type inequalities and their applications to quasilinear elliptic partial differential equations,? Comm. Pure Appl.,20, 721?747 (1967). · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
[9] L. P. Kuptsov, ?Harnack’s inequality for generalized solutions of nonlinear second-order (k, 0)-elliptic equations,? Diff. Uraveniya,6, No. 1, 147?156 (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.