Schaefer, H. H. On the representation of Banach lattices by continuous numerical functions. (English) Zbl 0216.40702 Math. Z. 125, 215-232 (1972). Cited in 24 Documents MSC: 46A40 Ordered topological linear spaces, vector lattices 46B42 Banach lattices 46E05 Lattices of continuous, differentiable or analytic functions PDFBibTeX XMLCite \textit{H. H. Schaefer}, Math. Z. 125, 215--232 (1972; Zbl 0216.40702) Full Text: DOI EuDML References: [1] Amemiya, I.: A general spectral theory in semi-ordered linear spaces. J. Fac. Sci. Hokkaido Univ., Ser. I12, 111-156 (1953). · Zbl 0053.25802 [2] Bauer, H.: Silovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier (Grenoble)11, 89-136 (1961). · Zbl 0098.06902 [3] Bernau, S.J.: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc.15, 599-631 (1965). · Zbl 0134.10802 · doi:10.1112/plms/s3-15.1.599 [4] Bourbaki, N.: Topologie générale, chap. 1 et 2, 3e éd. Paris: Hermann 1961. [5] ?: Intégration, chap. 1, 2, 3, et 4, 2e ed. Paris: Hermann 1965. [6] Davies, E.B.: The Choquet theory and representation of ordered Banach spaces. Illinois J. Math.13, 176-187 (1969). · Zbl 0165.46801 [7] Johnson, D.G., Kist, J.E.: Prime ideals in vector lattices. Canadian J. Math.14, 517-528 (1962). · Zbl 0103.33003 · doi:10.4153/CJM-1962-043-3 [8] Kakutani, S.: Concrete representation of abstract (M)-spaces. Ann. of Math.42, 994-1024 (1941). · Zbl 0060.26604 · doi:10.2307/1968778 [9] ?: Concrete representation of abstract (L)-spaces and the mean ergodic theorem. Ann. of Math.42, 523-537 (1941). · Zbl 0027.11102 · doi:10.2307/1968915 [10] Kantorovitch, L.V., Vulich, B.C., Pinsker, A.G.: Functional analysis in partially ordered spaces [Russian]. Moscow-Leningrad 1950. [11] Lotz, H.P.: Zur Idealstruktur von Banachverbänden. Habilitationsschrift. Tübingen 1969. To appear in J. Reine Angew. Math. [12] Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces, part I (Preprint). · Zbl 0231.46014 [13] Maeda, F., Ogasawara, T.: Representation of vector lattices. J. Sci. Hiroshima Univ., Ser. A12, 17-35 (1942). [14] Nakano, H.: Modern spectral theory. Tokyo: Maruzen 1950. · Zbl 0041.23402 [15] Papert, D.: A representation theory for lattice groups. Proc. London Math. Soc. (3)12, 100-120 (1962). · Zbl 0152.01401 · doi:10.1112/plms/s3-12.1.100 [16] Schaefer, H.H.: Topological vector spaces, 3rd print. Berlin-Heidelberg-New York: Springer 1971. · Zbl 0212.14001 [17] Yosida, K.: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo18, 339-342 (1942). · Zbl 0063.09070 · doi:10.3792/pia/1195573861 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.