Overcoherent arithmetic \(\mathcal D\)-modules. Application to \(L\)-functions. (\(\mathcal D \)-modules arithmétiques surcohérents. Application aux fonctions \(L\).) (French) Zbl 1129.14030

This article is one piece of the author’s program to construct a category of \(p\)-adic coefficients, attached to a scheme over a finite field \(k\), which is stable by the six Grothendieck operations: direct image (resp. exc. direct image), inverse image (resp. exc. inverse image), (external) tensor product, duality and local cohomological functors.
In this review \(D^{\dagger}\) will denote the sheaf of arithmetic \(D\)-modules of Berthelot and \(V\) is a discrete valuation ring such that \(k\) is the residue field of \(V\). We will work with modules which are endowed with a Frobenius structure denoted by \(F\), that means \(D^{\dagger}\)-modules \(M\) endowed with a \(D^{\dagger}\)-linear isomorphism \(F^*M\simeq M\). Let us notice that some interesting results are valid in this article for arithmetic \(D\)-modules which are not endowed with such a structure.
Conjecturally, the category of holonomic \(D^{\dagger}\)-modules of P. Berthelot [“D-modules arithmétiques. II. Descente par Frobenius.” Mém. Soc. Math. Fr., Nouv. Sér. 81 (2000; Zbl 0948.14017)] endowed with a Frobenius structure should be stable by the \(6\) operations but this result is not yet known. The approach here consists into defining a new subcategory of the derived category of arithmetic \(D^{\dagger}\)-modules with overconvergent singularities along a divisor, by forcing some property of stability by image inverse functors that holonomic \(F\)-\(D^{\dagger}\)-modules should conjecturally verify. This category is called the category of overcoherent \(F\)-\(D^{\dagger}\)-modules. In the case of a curve, it is known that an overcoherent \(D^{\dagger}\)-module is holonomic. In general, it is a consequence of Berthelot’s conjectures that the category introduced here is the same as the category of holonomic \(F\)-\(D^{\dagger}\)-modules defined by  Berthelot. As an example unit-root \(F\)-isocrystals are overcoherent.
One application of this construction is that D. Caro can define a category of \(F\)-\(D^{\dagger}_U\)-overcoherent modules for a separated scheme over \(k\). Locally, if \(U\) is obtained as \(T\backslash Z\) where \(T\) and \(Z\) are divisors of a smooth scheme \(X\), this category is obtained as the category of overcoherent \(F\)-\(D^{\dagger}\)-modules \(E\), over a smooth lifting of \(X\) over \(\text{Spf\,}V\), such that \(E\) has support in \(Z\) and such that the localization functor \(R\Gamma^{\dagger}_T E\) is \(0\). This category depends only on \(U\), and is stable by direct images and by exceptional inverse images.
In the last part, the author defines \(L\)-functions for duals of an overcoherent \(F\)-\(D^{\dagger}\)-module over a separated scheme \(U\) and proves a cohomological formula. This generalizes a previous formula of J.-Y. Étesse and B. Le Stum [Math. Ann. 296, No. 3, 557–576 (1993; Zbl 0789.14015)].


14F30 \(p\)-adic cohomology, crystalline cohomology
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
Full Text: DOI Numdam EuDML


[1] \( \cal D\)-modules arithmétiques. III. Images directes et inverses.
[2] \( \cal D\)-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), 29, 2, 185-272 (1996) · Zbl 0886.14004
[3] Cohérence différentielle des algèbres de fonctions surconvergentes, C. R. Acad. Sci. Paris Sér. I Math., 323, 1, 35-40 (1996) · Zbl 0871.14014
[4] Cohomologie rigide et cohomologie rigide à support propre. Première partie (1996)
[5] \( \cal D\)-modules arithmétiques. II. Descente par Frobenius, 81 (2000) · Zbl 0948.14017
[6] Introduction à la théorie arithmétique des \(\cal D\)-modules, Cohomologies \(p\)-adiques et applications arithmétiques, II., 279, 1-80 (2002) · Zbl 1098.14010
[7] Algebraic \(D\)-modules (1987) · Zbl 0642.32001
[8] Dévissages des \(\cal D\)-modules arithmétiques en isocristaux surconvergents
[9] Fonctions \(L\) associées aux \(\cal D\)-modules arithmétiques (2002)
[10] Fonctions \(L\) associées aux \(\cal D\)-modules arithmétiques. Cas des courbes (2003) · Zbl 1167.14012
[11] Cohérence différentielle des \(F\)-isocristaux unités, C. R. Math. Acad. Sci. Paris, 338, 2, 145-150 (2004) · Zbl 1047.14009
[12] Fonctions \(L\) associées aux \(F\)-isocristaux surconvergents. I. Interprétation cohomologique, Math. Ann., 296, 3, 557-576 (1993) · Zbl 0789.14015
[13] Fonctions \(L\) associées aux \(F\)-isocristaux surconvergents. II. Zéros et pôles unités, Invent. Math., 127, 1, 1-31 (1997) · Zbl 0911.14011
[14] Residues and duality (1966) · Zbl 0212.26101
[15] Finitude de la dimension cohomologique de la complétée faible de l’algèbre de Weyl et du faisceau des opérateurs différentiels arithmétiques à coefficients surconvergents le long d’un diviseur
[16] Construction et étude de la transformée de Fourier pour les \(\cal D\)-modules arithmétiques (1995)
[17] Induced \(\cal D\)-modules and differential complexes, Bull. Soc. Math. France, 117, 3, 361-387 (1989) · Zbl 0705.32005
[18] Théorie des topos et cohomologie étale des schémas, t. 2, Séminaire de Géométrie Algégrique du Bois-Marie 1963-1964 (SGA 4), 270 (1972) · Zbl 0237.00012
[19] Théorie des intersections et théorème de Riemann-Roch., Séminaire de Géométrie Algégrique du Bois Marie 1966-1967 (SGA 6), 225 (1971) · Zbl 0218.14001
[20] Dualité locale et holonomie pour les \(\cal D\)-modules arithmétiques, Bull. Soc. Math. France, 128, 1, 1-68 (2000) · Zbl 0955.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.