×

zbMATH — the first resource for mathematics

Differential-boundary operators. (English) Zbl 0217.11802

MSC:
34B15 Nonlinear boundary value problems for ordinary differential equations
47E05 General theory of ordinary differential operators (should also be assigned at least one other classification number in Section 47-XX)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Friedrich Betschier, Über Integraldarstellungen welche aus speziellen Randwertproblemen bei gewohnlichen linearen inhomogenen Differentialgleichungen entspringen, Doctoral Dissertation, Julius-Maximilians-Universität, Wurzburg, Germany, 1912.
[2] Gilbert Ames Bliss, A boundary value problem for a system of ordinary linear differential equations of the first order, Trans. Amer. Math. Soc. 28 (1926), no. 4, 561 – 584. · JFM 52.0453.13
[3] Gilbert A. Bliss, Definitely self-adjoint boundary value problems, Trans. Amer. Math. Soc. 44 (1938), no. 3, 413 – 428. · Zbl 0020.03204
[4] Robert Neff Bryan, A linear differential system with general linear boundary conditions., J. Differential Equations 5 (1969), 38 – 48. · Zbl 0185.16201 · doi:10.1016/0022-0396(69)90102-8 · doi.org
[5] Robert Neff Bryan, A nonhomogeneous linear differential system with interface conditions., Proc. Amer. Math. Soc. 22 (1969), 270 – 276. · Zbl 0201.11002
[6] Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. · Zbl 0064.33002
[7] Randal H. Cole, General boundary conditions for an ordinary linear differential system, Trans. Amer. Math. Soc. 111 (1964), 521 – 550. · Zbl 0151.11101
[8] Roberto Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Un. Mat. Ital. (3) 22 (1967), 135 – 178. · Zbl 0154.09101
[9] William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468 – 519. · Zbl 0047.09303 · doi:10.2307/1969644 · doi.org
[10] A. Halanay and A. Moro, A boundary value problem and its adjoint, Ann. Mat. Pura Appl. (4) 79 (1968), 399 – 411. · Zbl 0194.11803 · doi:10.1007/BF02415186 · doi.org
[11] E. Hilb, Über Reihentwicklungen, welche aus speciallen Randwertproblemen bei gewohnlichen linearen inhomogenen Differentialgleichungen entspringen, J. Reine Angew. Math. 140 (1911), 205-229. · JFM 42.0328.01
[12] William R. Jones, Differential systems with integral boundary conditions, J. Differential Equations 3 (1967), 191 – 202. · Zbl 0155.41102 · doi:10.1016/0022-0396(67)90024-1 · doi.org
[13] Taeboo Kim, Investigation of a differential-boundary operator of the second order with an integral boundary condition on a semi-axis, Doctoral Dissertation, Pennsylvania State University, University Park, Pennsylvania, 1969. · Zbl 0293.34038
[14] Allan M. Krall, A nonhomogeneous eigenfunction expansion, Trans. Amer. Math. Soc. 117 (1965), 352 – 361. · Zbl 0141.32301
[15] Allan M. Krall, The adjoint of a differential operator with integral boundary conditions, Proc. Amer. Math. Soc. 16 (1965), 738 – 742. · Zbl 0141.32302
[16] Allan M. Krall, Second order ordinary differential operators with general boundary conditions, Duke Math. J. 32 (1965), 617 – 625. · Zbl 0142.06201
[17] Allan M. Krall, Nonhomogeneous differential operators, Michigan Math. J. 12 (1965), 247 – 255. · Zbl 0142.06202
[18] Allan M. Krall, Differential operators and their adjoints under integral and multiple point boundary conditions, J. Differential Equations 4 (1968), 327 – 336. · Zbl 0165.42702 · doi:10.1016/0022-0396(68)90019-3 · doi.org
[19] Ralph Mansfield, Differential systems involving \?-point boundary conditions, Contributions to the Calculus of Variations, 1938 – 1941, University of Chicago Press, Chicago, Ill., 1942, pp. 413 – 452.
[20] M. A. Naĭmark, Linear differential operators, GITTL, Moscow, 1954; English transl, part I, Ungar, New York, 1967. MR 16, 702; MR 35 #6885.
[21] R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193 – 254. · Zbl 0093.10001
[22] William T. Reid, A class of two-point boundary problems, Illinois J. Math. 2 (1958), 434 – 453. · Zbl 0086.28802
[23] F. Reisz and B. Sz.-Nagy, Functional analysis, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR 15, 132; MR 17, 175.
[24] F. W. Stallard, Functions of bounded variation as solutions of differential systems, Proc. Amer. Math. Soc. 13 (1962), 366 – 373. · Zbl 0108.08203
[25] William M. Whyburn, Differential systems with general boundary conditions, Univ. California Publ. Math. (N. S.) 2 (1944), 45 – 61 [No. 1, Seminar Rep. in Math. (Los Angeles)]. · Zbl 0063.08244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.