×

zbMATH — the first resource for mathematics

On a residual set of continuous functions. (English) Zbl 0217.37204

MSC:
26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] S. Banach: Über die Baire’sche Kategorie gewisser Funktionenmengen. Studia Math. 3 (1931), 174-179. · Zbl 0003.29703
[2] K. M. Garg: On level sets of a continuous nowhere monotone function. Fund. Math. 52 (1963), 59-68. · Zbl 0106.26904
[3] K. M. Garg: On nowhere monotone functions III: Functions of first and second species. Rev. Math. Pures Appl. 8 (1963), 83-90. · Zbl 0138.03802
[4] K. M. Garg: On asymmetrical derivates of non-differentiable functions. Can. Jour. Math. 20 (1968), 135-143. · Zbl 0194.08601
[5] V. Jarník: Über die Differenzierbarkeit stetiger Funktionen. Fund. Math. 21 (1933), 48 - 58. · Zbl 0007.40102
[6] S. Mazurkiewicz: Sur les fonctions non dérivables. Studia Math. 3 (1931), 92-94. · Zbl 0003.29702
[7] S. Minakshisundaram: On the roots of a continuous non-differentiable function. Jour. Indian Math. Soc. 4 (1940), 31-33. · Zbl 0023.02001
[8] S. Saks: On the functions of Besicovitch in the space of continuous functions. Fund. Math. 19 (1932), 211-219. · Zbl 0005.39105
[9] A. N. Singh: On the method of construction and some properties of a class of non-differentiable functions. Proc. Benares Math. Soc. 13 (1931), 1 - 17. · Zbl 0007.15306
[10] A. N. Singh: The Theory and Construction of Non-differentiable Functions. Lucknow University Studies 1, 1935. · JFM 61.1113.06
[11] Z. Zahorski: Sur l’ensemble des racines de l’équation \(W(x) =f(x)\). C. R. Soc. Sci. Lett. Varsovie (3) 41 (1948), 43-45. · Zbl 0039.05604
[12] J. Gillis: Note on a conjecture of Erdös. Quart. Jour. Math. (Oxford) 10 (1939), 151-154. · Zbl 0021.30303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.