×

zbMATH — the first resource for mathematics

Dualité relative en géométrie analytique complexe. (French) Zbl 0218.14010

MSC:
14F99 (Co)homology theory in algebraic geometry
13D25 Complexes (MSC2000)
18E30 Derived categories, triangulated categories (MSC2010)
32C35 Analytic sheaves and cohomology groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France90, 193-259 (1962). · Zbl 0106.05501
[2] Banica, C., Stanasila, O.: Sur la cohomologie des faisceaux analytiques cohérents à support dans un compact holomorphe-convexe. Note aux C.R.A.S. Paris270, 1174-1177 (1970); cf. aussi269, 636-63912 (1969). · Zbl 0193.03904
[3] Hartshorne, R.: Residues and duality. Lecture notes in mathematics. vol.20, Berlin-Heidelberg-New York: Springer 1966 · Zbl 0212.26101
[4] Illusie L.: Conditions de finitude dans les catégories dérivées. Séminaire de Géometrie Algébrique du Bois-Marie 1966-1967, exposé no 1.
[5] Illusie, L. Verdier, J. L.: papier secret.
[6] Knorr, K.: Über den Grauertschen Kohärenzsatz bei eigentlichen holomorphen Abbildungen. Ann. Scuola Normale Superiore di Pisa22, 729-761, et23, 1-74 (1969). · Zbl 0177.34401
[7] Malgrange, B.: Some remarks on the notion of convexity for differential operators. from Differential analysis. Bombay Colloquium. 1964. · Zbl 0196.39003
[8] Malgrange, B.: Séminaire clandestin de géométrie analytique. Orsay, 1968.
[9] Ramis, J.-P.: Sous-ensembles analytiques d’une variété banachique complexe Ergebnisse Bd. 53. Berlin-Heidelberg-New York: Springer 1970.
[10] ?, Ruget, G.: Complexe dualisant et théorèmes de dualité en géométrie analytique complexe. Publ. Math. I.H.E.S.38, 77-91 (1971)13.
[11] Schwartz, L.: Homomorphismes et applications complètement continues, note aux C.R.A.S. Paris236, 2472-2473 (1953). · Zbl 0050.33301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.