×

zbMATH — the first resource for mathematics

Intrinsically ergodic systems. (English) Zbl 0218.28011

MSC:
28D99 Measure-theoretic ergodic theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573 – 1576. · Zbl 0177.08002
[2] Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. · Zbl 0195.06104
[3] V. N. Agafonov, Normal sequences and finite automata, Dokl. Akad. Nauk SSSR 179 (1968), 255 – 256 (Russian). · Zbl 0242.94040
[4] Kenneth R. Berg, Convolution of invariant measures, maximal entropy, Math. Systems Theory 3 (1969), 146 – 150. · Zbl 0179.08301
[5] E. I. Dinaburg, An example of the computation of topological entropy, Uspehi Mat. Nauk 23 (1968), no. 4 (142), 249 – 250 (Russian).
[6] Harry Furstenberg, Stationary processes and prediction theory, Annals of Mathematics Studies, No. 44, Princeton University Press, Princeton, N.J., 1960. · Zbl 0178.53002
[7] L. Wayne Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679 – 688. · Zbl 0186.09804
[8] B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715 – 718 (Russian).
[9] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55 – 66. · Zbl 0127.35301
[10] V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3 – 56 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.