×

zbMATH — the first resource for mathematics

A Rellich uniqueness theorem for steady-state wave propagation in inhomogeneous anisotropic media. (English) Zbl 0218.35053

MSC:
35L05 Wave equation
35L55 Higher-order hyperbolic systems
74J25 Inverse problems for waves in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eidus, D. M., The principle of limiting absorption. Mat. Sb. (N.S.) 58 (100), 65–86 (1962) (Russian).
[2] Friedrichs, K. O., Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345–393 (1954). · Zbl 0059.08902
[3] Grushin, V. V., On Sommerfeld-type conditions for a certain class of partial differential equations. Mat. Sb. (N.S.) 61, 147–174 (1963);
[4] Amer. Math. Soc. Transl., Ser. 2, 51, 82–112 (1966).
[5] Hörmander, L., Linear Partial Differential Operators. Berlin-Göttingen-Heidelberg: Springer 1963. · Zbl 0108.09301
[6] Kupradze, V. D., Randwertaufgaben der Schwingungstheorie und Integralgleichungen. Berlin: VEB Deutscher Verlag der Wissenschaften 1956. · Zbl 0041.43001
[7] Littman, W., Fourier transforms of surface-carried measures and differentiability of surface averages. Bull. Amer. Math. Soc. 69, 766–770 (1963). · Zbl 0143.34701
[8] Littman, W., Decay at infinity of solutions of partial differential equations with constant coefficients. Trans. Amer. Math. Soc. 123, 449–459 (1966). · Zbl 0144.13403
[9] Matsumura, M., Comportement des Solutions de Quelques Problèmes Mixtes pour Certains Systèmes Hyperboliques Symétriques à Coefficients Constants. Publ. RIMS, Kyoto Univ. 4, 309–359 (1968). · Zbl 0205.10101
[10] Matsumura, M., Uniform Estimates of Elementary Solutions of First Order Systems of Partial Differential Equations (preprint, 1970). · Zbl 0229.35011
[11] Mikhlin, S. G., Multidimensional Singular Integrals and Integral Equations. Oxford: Pergamon Press 1965. · Zbl 0129.07701
[12] Mochizuki, K., Spectral and scattering theory for symmetric hyperbolic systems in an exterior domain. Publ. RIMS, Kyoto Univ. 5, 219–258 (1969). · Zbl 0206.40102
[13] Müller, C., Die Grundzüge einer mathematischen Theorie elektromagnetischer Schwingungen. Arch. Math. 1, 296–302 (1948–49). · Zbl 0032.13302
[14] Rellich, F., Über das asymptotische Verhalten der Lösungen von {\(\Delta\)}u+ku=0 in unendlichen Gebieten. Jber. Deutschen Math. Verein. 53, 57–64 (1943). · Zbl 0028.16401
[15] Saunders, W. K., On solutions of Maxwell’s equations in an exterior region. Proc. Nat. Acad. Sci. U.S.A. 38, 342–348 (1952). · Zbl 0047.19701
[16] Schulenberger, J. R., Uniqueness theorems for a class of wave propagation problems. Arch. Rational Mech. Anal. 34, 70–84 (1969). · Zbl 0191.39304
[17] Schulenberger, J. R., The Green’s matrix for steady state wave propagation in a class of inhomogeneous anisotropic media. Arch. Rational Mech. Anal. 34, 380–402 (1969). · Zbl 0269.35033
[18] Schulenberger, J. R., & C. H. Wilcox, Completeness of the wave operators for perturbations of uniformly propagative systems. J. Functional Anal. (to appear). · Zbl 0223.47007
[19] Schulenberger, J. R., & C. H. Wilcox, Coerciveness Inequalities for Nonelliptic Systems of Partial Differential Equations. Ann. Mat. pura appl. 87 (to appear 1971). · Zbl 0215.45302
[20] Schwartz, L., Théorie des Distributions II. Paris: Hermann 1957.
[21] Silver, S., Editor, Microwave Antenna Theory and Design, M.I.T. Radiation Laboratory Series, Vol. 12. New York: McGraw-Hill 1949.
[22] Vainberg, B. R., Radiation, limiting absorption, and limiting amplitude principles in the general theory of partial differential equations. Usp. Mat. Nauk. 21, 115–194 (1966) (in Russian).
[23] Wilcox, C. H., Wave operators and asymptotic solutions of wave propagation problems of classical physics. Arch. Rational Mech. Anal. 22, 37–78 (1966). · Zbl 0159.14302
[24] Wilcox, C. H., Steady-state wave propagation in homogeneous anisotropic media. Arch. Rational Mech. Anal. 25, 201–242 (1967). · Zbl 0159.14401
[25] Wilcox, C. H., Transient wave propagation in homogeneous anisotropic media. Arch. Rational Mech. Anal. 37, 323–343 (1970). · Zbl 0201.43201
[26] Yosida, K., Functional Analysis. Berlin-Göttingen-Heidelberg: Springer 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.