×

zbMATH — the first resource for mathematics

Note on separation of convex sets. (English) Zbl 0218.46018

MSC:
46B20 Geometry and structure of normed linear spaces
46B25 Classical Banach spaces in the general theory
46A55 Convex sets in topological linear spaces; Choquet theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] E. Asplund: Fréchet differentiability of convex functions. Acta Mathem. 121 (1 - 2), (1968), 31-48. · Zbl 0162.17501
[2] E. Bishop R. R. Phelps: A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 67, 79-98. · Zbl 0098.07905
[3] N. Dunford J. T. Schwartz: Linear operators. Part I, Interscience, New York 1966. · Zbl 0128.34803
[4] Н. А. Иванов: О дифференциалах Гато и Фреше. Успехи Матем. наук 10 (1955), 161 - 166. · Zbl 1160.26300
[5] M. I. Kadec: On the spaces isomorphic to locally uniformly rotund spaces. (Russian), Izvestija vysš. uč. zav. Matem. 1, (1959), 6, 51-57 and 1, (1961), 6, 186-187.
[6] J. Lindenstrauss: On operators which attain their norm. Israel Journal Math. 1 (1963), 139-148. · Zbl 0127.06704
[7] A. R. Lovaglia: Locally uniformly convex Banach spaces. Trans. Am. Math. Soc. 78 (1958) 225-238. · Zbl 0064.35601
[8] S. Mazur: Über schwache Konvergenz in den Räumen \(L^p\). Studia Math. 4 (1933) 128 - 133. · Zbl 0008.31604
[9] R. R. Phelps: A representation theorem for bounded convex sets. Proc. Am. Math. Soc. 11 (1960), 976-983. · Zbl 0098.07904
[10] V. L. Šmuljan: Sur la structure de la sphere unitaire dans l’espace de Banach. Matem. Sborník 9 (1941) 545-572.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.