×

zbMATH — the first resource for mathematics

On the maps of one fibre space into another. (English) Zbl 0218.55019

MSC:
55R05 Fiber spaces in algebraic topology
55P40 Suspensions
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] W.D. Barcus [1] Note on cross-sections over CW-complexes , Quart. J. Math. Oxford (2), 5 (1954), 150-160. · Zbl 0056.16502 · doi:10.1093/qmath/os-5.1.150
[2] W.D. Barcus AND M.G. Barratt [2] On the homotopy classification of extensions of a fixed map , Trans. Amer. Math. Soc. 88 (1958), 57-74. · Zbl 0095.16801 · doi:10.2307/1993236
[3] I.M. James [3] On fibre bundles and their homotopy groups , J. Math. Kyoto Univ. 9 (1969), 5-24. · Zbl 0189.23801 · doi:10.1215/kjm/1250524008
[4] I.M. James [4] Ex-homotopy theory I , Illinois J. of Math. 15 (1971), 324-337. · Zbl 0225.55012
[5] I.M. James [5] Products between homotopy groups , Comp. Math. 23 (1971), 329-345. · Zbl 0218.55020 · numdam:CM_1971__23_3_329_0 · eudml:89094
[6] I.M. James And J.H.C. Whitehead [6] Note on fibre spaces , Proc. London Math. Soc. (3), 4 (1954), 129-137. · Zbl 0056.16702 · doi:10.1112/plms/s3-4.1.129
[7] I.M. James AND J.H.C. Whitehead [7] The homotopy theory of sphere bundles over spheres I , Proc. London Math. Soc. (3), 4 (1954), 196-218. · Zbl 0056.16703 · doi:10.1112/plms/s3-4.1.196
[8] I.M. James AND J.H.C. Whitehead [8] The homotopy theory of sphere bundles over spheres II , Proc. London Math. Soc. (3), 5 (1955), 148-166. · Zbl 0067.15901 · doi:10.1112/plms/s3-5.2.148
[9] G.S. Mccarty , JR. [9] Products between homotopy groups and the J-morphism , Quart. J. Math. Oxford (2), 15 (1964), 362-370. · Zbl 0123.16102 · doi:10.1093/qmath/15.1.362
[10] G.W. Whitehead [10] A generalization of the Hopf invariant , Ann. of Math. 51 (1950), 192-237. · Zbl 0041.51903 · doi:10.2307/1969506
[11] J.H.C. Whitehead [11] Combinatorial homotopy I , Bull. Amer. Math. Soc. 55 (1949), 213-245. · Zbl 0040.38704 · doi:10.1090/S0002-9904-1949-09175-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.