zbMATH — the first resource for mathematics

Monotone regression: Continuity and differentiability properties. (English) Zbl 0218.62078

62J99 Linear inference, regression
Full Text: DOI
[1] Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. & Silverman, Edward (1955), An empirical distribution function for sampling with incomplete information,Annals of Mathematical Statistics,26, pp. 641–647. · Zbl 0066.38502
[2] Bartholomew, D. J. A test of homogeneity for ordered alternatives.Biometrika, 1959,46, 36–48. · Zbl 0087.14202
[3] Bartholomew, D. J. A test of homogeneity of means under restricted alternatives (with discussion).Journal of the Royal Statistics Society, Series B, 1961,23, 239–281. · Zbl 0209.50303
[4] Barton, D. E. & Mallows, C. L. The randomization bases of the amalgamation of weighted means.Journal of the Royal Statistics Society, Series B, 1961,23, 423–433. · Zbl 0119.35501
[5] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–28. · Zbl 0123.36803
[6] Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method.Psychometrika, 1964,29, 115–129. · Zbl 0123.36804
[7] Kruskal, J. B. Analysis of factorial experiments by estimating monotone transformations of the data.Journal of the Royal Statistical Society, Series B, 1965,27, 251–263.
[8] Kruskal, J. B. Two convex counterexamples: a discontinuous envelope function and a non-differentiable nearest-point mapping, accepted by Proceedings of the American Math. Society, 1969a. · Zbl 0184.47401
[9] Kruskal, J. B. & Carmone, Frank. MONANOVA, a Fortran IV program for monotone analysis of variance.Journal of Marketing Research (to appear).
[10] Kruskal, J. B. & Carmone, Frank. MONANOVA: A Fortran IV program for monotone analysis of variance, (non-metric analysis of Factorial Experiments) Behavioral Science, 1969,14, 165–166 (CPA 319).
[11] Kruskal, J. B. & Carroll, J. D. Geometrical models and badness-of-fit functions, inMultivariate Analysis–II, (ed). P. R. Krishnaiah, Academic Press, New York City (1969).
[12] Kruskal, J. B. A new convergence condition for methods of ascent, submitted to the Short Notes section of SIAM Review 1970.
[13] Miles, R. E. The complete amalgamation into blocks, by weighted means, of a finite set of real numbers.Biometrika, 1959,46, 317–327. · Zbl 0090.36001
[14] Moreau, Jean Jaques. Convexity and duality, inCaianiello, E. R., (ed).Functional analysis and optimization, Academic Press, New York (1969.)
[15] Nashed, M. Z. A decomposition relative to convex sets,Proceedings of the American Mathematical Society, 1968,19, 782–786. · Zbl 0162.20201
[16] van Eeden, C. Maximum likelihood estimation of partially or completely ordered parameters, I.Proceedings of Akademie van Wetenschappen, Series A, 1957a,60, 128–136. · Zbl 0086.12803
[17] van Eeden, C. Note on two methods for estimating ordered parameters of probability distributions.Proceedings of Akademie van Uetenschappen, Series A, 1957b,60, 506–512. · Zbl 0086.12804
[18] Witsenhausen, H. A minimax control problem for sampled linear systems,IEEE Transactions on Automatic Control, 1968, AC-13, 5–21.
[19] Young, F. W. & Torgerson, W. S. TORSCA, a Fortran IV program for Shepard-Kruskal multidimensional scaling analysis,Behavioral Science, 1967,12, 498.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.