zbMATH — the first resource for mathematics

Condition number for the Drazin inverse and the Drazin-inverse solution of singular linear system with their condition numbers. (English) Zbl 1077.15007
The condition number for the Drazin inverse and the Drazin-inverse solution of singular linear systems $$Ax=b$$ are investigated under the $$P$$-norm and a componentwise perturbation. The assumptions $$\text{Im}(E) \subseteq \text{Im}(A^k)$$ and $$\text{Im}(E^T) \subseteq \text{Im}(A^k)^T$$ on the perturbation $$E$$ are assumed, where $$\text{Im}(E)$$ denotes the range of $$E$$, $$E^T$$ is the transpose of $$E$$ and $$k$$ is the index of $$A$$.

MSC:
 15A12 Conditioning of matrices 15A09 Theory of matrix inversion and generalized inverses
Software:
DGMRES; mctoolbox
Full Text:
References:
 [1] Ben-Israel, A.; Greville, T.N.E., Generalized inversestheory and applications, (2003), Springer New York [2] S. Campbell, C. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979, Dover, New York, 1991. · Zbl 0417.15002 [3] Climent, J.; Neumann, M.; Sidi, A., A semi-iterative method for real spectrum singular linear systems with an arbitrary index, J. comput. appl. math., 87, 21-38, (1997) · Zbl 0899.65020 [4] Demmel, J.W., On condition numbers and the distance the nearest ill-posed problem, Numer. math., 51, 251-289, (1987) · Zbl 0597.65036 [5] Diao, H.; Wei, Y., Structured perturbation of group inverse and singular linear system with index one, J. comput. appl. math., 173, 93-113, (2005) · Zbl 1066.15001 [6] Diao, H.; Wei, Y.; Qiao, S., Displacement rank of Drazin inverse, J. comput. appl. math., 167, 147-161, (2004) · Zbl 1055.15001 [7] Djordjevic, D.; Wei, Y., Additive results for the generalized Drazin inverse, J. austral. math. soc., 73, 115-125, (2002) · Zbl 1020.47001 [8] Eierman, M.; Marek, I.; Niethammer, W., On the solution of singular linear systems of algebraic equations by semi-iterative methods, Numer. math., 53, 265-283, (1988) [9] Golub, G.H.; Van Loan, C.F., Matrix computations, (1996), Johns Hopkins University Baltimore · Zbl 0865.65009 [10] Gratton, S., On the condition number for linear least squares problems in a weighted Frobenius norm, Bit, 36, 523-530, (1996) · Zbl 0878.65030 [11] Higham, D.J., Condition numbers and their condition numbers, Linear algebra appl., 214, 193-213, (1995) · Zbl 0816.15004 [12] Higham, N.J., Accuracy and stability of numerical algorithms, (2000), SIAM Philadelphia [13] Rakocevic, V.; Wei, Y., The perturbation theory for the Drazin inverse and its applications II, J. austral. math. soc., 70, 189-197, (2001) · Zbl 0983.47001 [14] Rice, J.R., A theory of condition, SIAM J. numer. anal., 3, 287-310, (1966) · Zbl 0143.37101 [15] Rohn, J., New condition numbers for matrices and linear systems, Computing, 41, 167-169, (1989) · Zbl 0665.65042 [16] Sidi, A., DGMRESA GMRES-type algorithm for Drazin-inverse solution of singular non-symmetric linear systems, Linear algebra appl., 335, 189-204, (2001) · Zbl 0982.65043 [17] Wang, G.; Wei, Y.; Qiao, S., Generalized inversestheory and computations, (2004), Science Press Beijing/New York [18] Wei, Y., Index splitting for the Drazin inverse and the singular linear system, Appl. math. comput., 96, 115-124, (1998) · Zbl 0942.15003 [19] Wei, Y., Perturbation analysis of singular linear systems with index one, Internat. J. comput. math., 74, 483-491, (2000) · Zbl 0958.65043 [20] Wei, Y.; Wang, G., The perturbation theory for the Drazin inverse and its applications, Linear algebra appl., 258, 179-186, (1997) · Zbl 0882.15003 [21] Wei, Y.; Wang, G.; Wang, D., Condition number of Drazin inverse and their condition number, Appl. math. comput., 146, 455-467, (2003) · Zbl 1044.15006 [22] Wei, Y.; Wu, H., Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index, J. comput. appl. math., 114, 305-318, (2000) · Zbl 0959.65046 [23] Wei, Y.; Wu, H., The representation and approximation of the Drazin inverse, J. comput. appl. math., 126, 417-432, (2001) · Zbl 0979.65030 [24] Wei, Y.; Wu, H., Additional results on index splittings for Drazin inverse solutions of singular linear systems, Electron. J. linear algebra, 8, 83-93, (2001) · Zbl 0978.15006 [25] Zhou, J.; Wei, Y., Stagnation analysis of DGMRES, Appl. math. comput., 151, 27-39, (2004) · Zbl 1056.65036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.