Foata, D. Enumerating k-trees. (English) Zbl 0219.05066 Discrete Math. 1, 181-186 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 11 Documents MSC: 05C30 Enumeration in graph theory 05C05 Trees PDF BibTeX XML Cite \textit{D. Foata}, Discrete Math. 1, 181--186 (1971; Zbl 0219.05066) Full Text: DOI OpenURL References: [1] Beineke, L.W.; Pippert, R.E., The number of labeled k-dimensional trees, J. combinatorial theory, 6, 200-205, (1969) · Zbl 0175.20904 [2] Foata, D.; Fuchs, A., Réarrangements de fonctions et dénombrement, J. combinatorial theory, 8, 361-375, (1970) · Zbl 0216.29803 [3] Harary, F.; Palmer, E.M., On acyclic simplicial complexes, Mathematika, 15, 115-122, (1968) · Zbl 0157.54903 [4] Moon, J.W., The number of labeled k-trees, J. combinatorial theory, 6, 196-199, (1969) · Zbl 0175.50203 [5] R. Mullin and G.-C. Rota, On the foundations of combinatorial theory III, Theory of binomial enumeration, to be published. · Zbl 0259.12001 [6] Palmer, E.M., On the number of labeled 2-trees, J. combinatorial theory, 6, 206-207, (1969) · Zbl 0175.50202 [7] Prûfer, H., Neuer beweis eines satzes über permutationen, Arch. Mach. phys., 27, 142-144, (1918) · JFM 46.0106.04 [8] Rényi, A.; Rényi, C., The Prüfer code for k-trees, () · Zbl 0207.23001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.