×

zbMATH — the first resource for mathematics

A large sieve density estimate near \(\sigma = 1\). (English) Zbl 0219.10048

MSC:
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
11N35 Sieves
11L07 Estimates on exponential sums
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bombieri, E.: On the large sieve. Mathematika12, 201-225 (1965). · Zbl 0136.33004 · doi:10.1112/S0025579300005313
[2] ?, Davenport, H.: On the large sieve method. Abhandlungen aus Zahlentheorie und Analysis. Berlin: VEB Deutscher Verlag der Wissenschaften 1968.
[3] Chen, Jing-Run.: On the least prime in an arithmetical progression. Sci. Sinica14, 1868-1871 (1965). · Zbl 0146.27502
[4] Davenport, H.: Multiplicative number theory. Chicago: Markham 1967. · Zbl 0159.06303
[5] Fogels, E.: On the zeros ofL-functions. Acta Arith.11, 67-96 (1965). · Zbl 0136.03004
[6] Gallagher, P. X.: The large sieve. Mathematika14, 14-20 (1967). · Zbl 0163.04401 · doi:10.1112/S0025579300007968
[7] Jutila, M.: A statistical density theorem forL-functions with applications. Acta Arith.16, 207-216 (1969). · Zbl 0185.10901
[8] ?: On two theorems of Linnik concerning the zeros of Dirichlet’sL-functions. Ann. Acad. Sci. Fennicae.458, 1-32 (1969).
[9] Knapowski, S.: On Linnik’s theorem concerning exceptionalL-zeros. Publ. Math. Debrecen9, 168-178 (1962). · Zbl 0141.04602
[10] Linnik, Yu. V.: On the least prime in an arithmetic progression. Math. Sbornik., N.S.15 (57), 139-178, 347-367 (1944). · Zbl 0063.03584
[11] van Lint, J. H., Richert, H.-E.: On primes in arithmetic progressions. Acta Arith.11, 209-216 (1965). · Zbl 0133.29901
[12] Montgomery, H. L.: Mean and large values of Dirichlet polynomials. Inventiones math.8, 334-345 (1969). · Zbl 0204.37301 · doi:10.1007/BF01404637
[13] ?: Zeros ofL-functions. Invent. Math.8, 346-354 (1969). · Zbl 0204.37401 · doi:10.1007/BF01404638
[14] Prachar, K.: Primzahlverteilung. Berlin-Göttingen-Heidelberg: Springer 1957.
[15] Sos, V., Turán, P.: On some new theorems in the theory of diophantine approximations. Acta. Math. Hung.6, 241-253 (1955). · Zbl 0066.29304 · doi:10.1007/BF02024389
[16] Turán, P.: On a density theorem of Yu. V. Linnik. Publ. Math. Inst. Hung. Acad. Sci., Ser. A6, 165-179 (1961). · Zbl 0146.05802
[17] ?: Analysis and diophantine approximation. Istituto Nazionale di Alta Mathematica. Symposia Mathematica4, 133-153 (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.