Martinet, Jacques Modules sur l’algèbre du groupe quaternionien. (French) Zbl 0219.12012 Ann. Sci. Éc. Norm. Supér. (4) 4, 399-408 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 20 Documents MSC: 11R52 Quaternion and other division algebras: arithmetic, zeta functions × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] P. DAMEY et J.-J. PAYAN , Existence et construction des extensions galoisiennes et non abéliennes de degré 8 d’un corps de caractéristique différente de 2 (J. reine angew. Math., vol. 244, 1970 , p. 37-54). MR 43 #6186 | Zbl 0206.34401 · Zbl 0206.34401 · doi:10.1515/crll.1970.244.37 [2] E. HECKE , Vorlesungen über die theorie der algebraischen Zahlen , Leipzig, 1923 . Réimpression : New-York, 1948 . Zbl 0041.01102 | JFM 49.0106.10 · Zbl 0041.01102 [3] J. MARTINET , Sur l’arithmétique des extensions galoisiennes à groupe de Galois diédral d’ordre 2 p (Ann. Inst. Fourier, Grenoble, t. 19, n^\circ 1, 1969 , p. 1 à 80). Numdam | MR 41 #6820 | Zbl 0165.06502 · Zbl 0165.06502 · doi:10.5802/aif.307 [4] J. MARTINET , Sur l’anneau des entiers d’une extension galoisienne , (Communication individuelle au Congrès international des Mathématiciens, Nice, 1970 , p. 41). [5] J.-P. SERRE , Corps locaux , Hermann, Paris, 1962 . MR 27 #133 | Zbl 0137.02601 · Zbl 0137.02601 [6] J.-P. SERRE , Modules projectifs et espaces fibrés à fibre vectorielle (Séminaire Dubreuil, exposé n^\circ 23, 1968 , p. 23-01 à 23-18). Numdam | Zbl 0132.41202 · Zbl 0132.41202 [7] R. G. SWAN , Induced representations and projective modules (Ann. of Math., vol. 71, 1960 , p. 552-578). MR 25 #2131 | Zbl 0104.25102 · Zbl 0104.25102 · doi:10.2307/1969944 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.