Théorie de Hodge. II. (Hodge theory. II). (French) Zbl 0219.14007


14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
Full Text: DOI Numdam EuDML


[1] M. F. Atiyah andW. V. D. Hodge, Integrals of the second kind on an algebraic variety,Ann. of Math.,62 (1955), 56–91. · Zbl 0068.34401
[2] P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales,Publ. Math. I.H.E.S.,35 (1968), 107–126. · Zbl 0159.22501
[3] P. Deligne, Equations différentielles à points singuliers réguliers,Lectures Notes in mathematics,163, Springer, 1970.
[4] P. A. Griffiths, On the periods of certain rational integrals, I,Ann. of Math.,90, 3 (1969), 460–495. · Zbl 0215.08103
[5] P. A. Griffiths, Periods of integrals on algebraic manifolds, III,Publ. Math. I.H.E.S.,38 (1970), 125–180. · Zbl 0212.53503
[6] A. Grothendieck, Le groupe de Brauer, III: Exemples et compléments.Dix exposés sur la cohomologie des schémas, North-Holland Publ. Co., 1968.
[7] A. Grothendieck, Un théorème sur les homomorphismes de schémas abéliens,Inv. Math.,2 (1966), 59–78. · Zbl 0147.20302
[8] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,Ann. of Math.,79 (1964), 109–326. · Zbl 0122.38603
[9] W. V. D. Hodge,The theory and applications of harmonic integrals, Cambridge Univ. Press, 2e éd., 1952. · Zbl 0048.15702
[10] N. Katz, Nilpotent connections and the monodromy theorem. Applications of a result of Turritin,Publ. Math. I.H.E.S.,39 (1971), 175–232.
[11] M. Nagata, Imbedding of an abstract variety in a complete variety,J. Math. Kyoto,2, 1 (1962), 1–10. · Zbl 0109.39503
[12] A. Weil, Variétés kählériennes,Publ. Inst. Math. Univ. Nancago, VI, Paris, Hermann, 1958.
[13] A. Borel, non publié.
[14] P. Deligne, Théorie de Hodge, I,Actes du Congrès international des mathématiciens, Nice, 1970.
[15] R. Godement, Topologie algébrique et théorie des faisceaux,Publ. Inst. Math. Univ. Strasbourg, XIII, Paris, Hermann, 1958. · Zbl 0080.16201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.