×

zbMATH — the first resource for mathematics

On Hecke polynomials. (English) Zbl 0219.14014

MSC:
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G15 Finite ground fields in algebraic geometry
14H52 Elliptic curves
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Deligne, P.: Formes Modulaires et Représentationsl-adiques. Sem. Bourbaki 1968/69, No. 355.
[2] Dwork, B.: On the rationality of the zeta function of an algebraic variety. Amer. J. Math.82, 631-648 (1960). · Zbl 0173.48501
[3] Dwork, B.: Zeta function of a hypersurface I. Pub. Math. IHES #12, Paris 1962. · Zbl 0173.48601
[4] Dwork, B.: Zeta function of a hypersurface II. Ann. of Math.80 (1964). · Zbl 0173.48601
[5] Dwork, B.:p-adic cycles. Pub. Math. IHES 37, Paris 1969. · Zbl 0284.14008
[6] Dwork, B.: Normalized period matrices I. Plane curves. Ann. of Math. (to appear). · Zbl 0241.14011
[7] Ihara, Y.: Hecke polynomials as congruence zeta functions in elliptic modular case. Ann. of Math.85, 267-295 (1967). · Zbl 0181.36501
[8] Monsky, P.: Formal cohomology, Part III, Fixed point theorems. Ann. of Math. (to appear). · Zbl 0213.47501
[9] Morita, Y.: Hecke polynomialsH k (p) (u) (p=2, 3). Journ. Fac. Sci., University of Tokyo. Sec. I, 15, 99-105 (1968). · Zbl 0165.54901
[10] ?: Hecke polynomials of modular groups. Journ. Math. Soc. Jap.21, 607-637 (1969). · Zbl 0212.25705
[11] Reich, D.: Ap-adic fixed point formula. Amer. Journ. Math.91, 835-850 (1969). · Zbl 0213.47502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.