La conjecture de Weil pour les surfaces K3. (French) Zbl 0219.14022


14K15 Arithmetic ground fields for abelian varieties
14F30 \(p\)-adic cohomology, crystalline cohomology
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G25 Global ground fields in algebraic geometry
14J25 Special surfaces
Full Text: DOI EuDML


[1] Artin, M.: Algebraisation of formal moduli I. Global analysis. Papers in honor of K. Kodaira. Princeton University Press.
[2] Baily, W. L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Annals of Math. (2)84, 442-528 (1966). (MR35, 6870). · Zbl 0154.08602 · doi:10.2307/1970457
[3] Bourbaki, N.: Algèbre?Chapitre 9. Paris: Hermann 1959. Act. Sci. et Ind. 1272.
[4] Deligne, P.: Travaux de Griffiths?Séminaire Bourbaki 376?mai 1970. Lecture Notes in mathematics180. Berlin-Heidelberg-New York: Springer 1971.
[5] Demazure, M.: Motifs des variétés algébriques?Séminaire Bourbaki 365?mai 1970. Lecture Notes in mathematics180. Berlin-Heidelberg-New York: Springer 1971.
[6] Griffiths, P. A.: Periods of integrals on algebraic manifolds. (Summary of main results and discussions of open problems and conjectures). Bull. Am. Math. Soc.75, 228-296 (1970). · Zbl 0214.19802 · doi:10.1090/S0002-9904-1970-12444-2
[7] Kuga, M., Satake, I.: Abelian varieties attached to polarized K 3-surfaces. Math. Ann.169, 239-242 (1967). (MR35 1602). · Zbl 0221.14019 · doi:10.1007/BF01399540
[8] ?afarevitch, Chafonevitch, I. R., Averbuch, B. C. Vaünberg, Ju. R., Jujtchenko, A. B., Manin, Ju. I., Moishezon, B. C., Tjurina, C. I., Tjurin, A. I.: Algebraic surfaces. Trudi Mat. Inst. Steklov LXXV.
[9] Weil, A.: Variétés abéliennes et courbes algébriques. Paris: Hermann 1948.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.