×

zbMATH — the first resource for mathematics

On the equations defining Abelian varieties. I-III. (English) Zbl 0219.14024
Invent. Math. 1, 287-354 (1966); ibid. 3, 75-135, 215-244 (1967).

MSC:
14K10 Algebraic moduli of abelian varieties, classification
14K05 Algebraic theory of abelian varieties
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Baily, W. jr.: On the theory of ?-functions, the moduli of abelian varieties, and the moduli of curves, Annals of Math.75, 342?381 (1962). · Zbl 0147.39702
[2] Cartier, P.: Unitary representations and theta functions. Proc. of 1965 AMS Summer Institute in Boulder, to appear. · Zbl 0178.28401
[3] Grothendieck, A.: Séminaire de géométrie algébrique. Inst. des Hautes Études Sci. 1960?61 (Mimeographed).
[4] Grothendieck, A.: Séminaire: Schemas en groupes. Inst. des Hautes Études Sci., 1963?64 (Mimeographed).
[5] Grothendieck, A., etJ. Dieudonné: Éléments de la géométrie algébrique. Publ. de l’Inst. des Hautes Études Sci., No 4, 8, 11, ....
[6] Igusa, J.-I.: On the graded ring of theta-constants. Am. J. Math.86, 219?246 (1964);88, 221?236 (1966). · Zbl 0146.31703
[7] Lang, S.: Abelian varieties. New York: Interscience 1958. · Zbl 0098.13201
[8] Mackey, G.: On a theorem of Stone and von Neumann. Duke Math. J.16, 313?340 (1949). · Zbl 0036.07703
[9] Mumford, D.: Geometric invariant theory. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0147.39304
[10] Mumford, D.: Curves on an algebraic surface (to appear in Annals of Math. Studies). · Zbl 0187.42701
[11] Siegel, C. Moduln abelscher funktionen. Nachrichten der Akad. Göttingen, 1964. · Zbl 0122.32102
[12] Weil, A.: Sur certaines groupes d’operateurs unitaire. Acta Math.111, 145?211 (1964). · Zbl 0203.03305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.