Ferrier, Jean-Pierre Approximation avec croissance des fonctions holomorphes de plusieurs variables. (Approximation with growth of the holomorphic functions of several variables). (French) Zbl 0219.32009 Ann. Inst. Fourier 22, No. 1, 67-87 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents MSC: 32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs PDF BibTeX XML Cite \textit{J.-P. Ferrier}, Ann. Inst. Fourier 22, No. 1, 67--87 (1972; Zbl 0219.32009) Full Text: DOI Numdam EuDML OpenURL References: [1] I. CNOP, Un problème de spectre dans certaines algèbres de fonctions holomorphes à croissance tempérée, C.R. Acad. Sc. Paris, A 270, (1970), 1690-1691. · Zbl 0194.44502 [2] I. CNOP, A theorem concerning holomorphic functions with bounded growth (thesis). · Zbl 0289.32007 [3] J.P. FERRIER, Séminaire sur LES algèbres complètes, Springer Lectures Notes, n° 164, (1970). · Zbl 0203.13203 [4] J.P. FERRIER, Sur la convexité holomorphe et LES limites inductives d’algèbres O(δ) ; C.R. Acad. Sc. Paris. A, (1971). · Zbl 0214.14001 [5] L. HÖRMANDER, Generators for some rings of analytic functions, Bull. Am. Math. Soc., 73, 943-949, (1967). · Zbl 0172.41701 [6] L. HÖRMANDER, L² estimates and existence theorems for the ∂-operator, Acta Math., 113, 89-152, (1965). · Zbl 0158.11002 [7] B. MALGRANGE, Sur LES systèmes différentiels à coefficients constants ; Coll. Int. du C.N.R.S., 117, (1963), 113-122. · Zbl 0231.46073 [8] L. WAELBROECK, Etude spectrale des algèbres complètes, Mém. Cl. Sc. Acad. Roy. Belg., 31, fasc. 7, (1960). · Zbl 0193.10005 [9] L. WAELBROECK, Lectures in spectral theory, Dep. Math. Univ. Yale, (1963). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.