×

zbMATH — the first resource for mathematics

Banach spaces of compact multipliers and their dual spaces. (English) Zbl 0219.43008

MSC:
43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
46B10 Duality and reflexivity in normed linear and Banach spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bachelis, G. F.: Homomorphisms of annihilator Banach algebras. Pacific J. Math.25, 229-247 (1968). · Zbl 0164.15701
[2] Bachelis, G. F.: On the ideal of unconditionally convergent Fourier series inL p (G). Proc. Amer. Math. Soc.27, 309-312 (1971). · Zbl 0208.37805
[3] Boyd, D. A.: Indices of function spaces and their relationship to interpolation. Canadian J. Math.21, 1245-1254 (1969). · Zbl 0184.34802 · doi:10.4153/CJM-1969-137-x
[4] Butzer, P. L., Berens, H.: Semi-groups of operators and approximation. Berlin-Heidelberg-New York: Springer 1967. · Zbl 0164.43702
[5] Day, M. M.: Normed linear spaces. New York: Academic Press Inc. 1962. · Zbl 0100.10802
[6] Dunkl, C. F., Ramirez, D. E.: Multipliers on compact groups. Proc. Amer. Math. Soc.28, 456-460 (1971). · Zbl 0211.43103 · doi:10.1090/S0002-9939-1971-0276791-1
[7] Dunkl, C. F., Ramirez, D. E.:L p -multipliers on compact groups. Notices Amer. Math. Soc.17, 955-956 (1970).
[8] Figà-Talamanca, A.: Translation invariant operators. Duke Math. J.32, 495-501 (1965). · Zbl 0142.10403 · doi:10.1215/S0012-7094-65-03250-3
[9] Figà-Talamanca, A., Gaudry, G. I.: Density and representation theorems for multipliers of type (p \(\cdot\) q). J. Australian Math. Soc.7, 1-6 (1967). · Zbl 0171.34102 · doi:10.1017/S1446788700005012
[10] Gaudry, G. I.: Quasimeasures and multiplier problems. Thesis. Australian National University, Canberra, 1965.
[11] Gil de Lamadrid, J.: Measures and tensors. Trans. Amer. Math. Soc.114, 98-121 (1965). · Zbl 0186.46604
[12] Gil de Lamadrid, J.: Topological modules: Banach algebras, tensor products, algebras of kernels. Trans. Amer. Math. Soc.126, 361-419 (1967). · Zbl 0171.33801
[13] Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires. Mem. Amer. Math. Soc. No.16, 1955. · Zbl 0123.30301
[14] Helgason, S.: Multipliers of Banach algebras. Ann. of Math. (2)64, 240-254 (1956). · Zbl 0072.32303 · doi:10.2307/1969971
[15] Hewitt, E., Ross, K.: Abstract harmonic analysis, vol. II. Berlin-Heidelberg-New York: Springer 1970. · Zbl 0213.40103
[16] Katznelson, Y.: An introduction to harmonic analysis. New York: John Wiley and Sons 1968. · Zbl 0169.17902
[17] Rieffel, M. A.: Induced Banach representations of Banach algebras and locally compact groups. J. Functional Analysis1, 443-491 (1967). · Zbl 0181.41303 · doi:10.1016/0022-1236(67)90012-2
[18] Rieffel, M. A.: Multipliers and tensor products ofL p -spaces of locally compact groups. Studia Math.33, 71-82 (1969). · Zbl 0177.41702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.