×

zbMATH — the first resource for mathematics

Varieties of locally convex topological vector spaces. (English) Zbl 0219.46002

MSC:
46A03 General theory of locally convex spaces
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932. · JFM 58.0420.01
[2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151 – 164. · Zbl 0084.09805
[3] M. S. Brooks, Sidney A. Morris, and Stephen A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 191 – 197. · Zbl 0263.22002 · doi:10.1017/S0013091500009913 · doi.org
[4] Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906 – 911. · Zbl 0080.31204
[5] J. Diestel, Sidney A. Morris, and Stephen A. Saxon, Varieties of linear topological spaces, Trans. Amer. Math. Soc. 172 (1972), 207 – 230. · Zbl 0252.46001
[6] A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type \?(\?), Canadian J. Math. 5 (1953), 129 – 173 (French). · Zbl 0050.10902
[7] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), 140 (French). · Zbl 0064.35501
[8] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[9] Takako Kōmura and Yukio Kōmura, Über die Einbettung der nuklearen Räume in (\?)^\?, Math. Ann. 162 (1965/1966), 284 – 288 (German). · Zbl 0156.13402 · doi:10.1007/BF01360917 · doi.org
[10] Elton Lacey and R. J. Whitley, Conditions under which all the bounded linear maps are compact, Math. Ann. 158 (1965), 1 – 5. · Zbl 0141.32102 · doi:10.1007/BF01370391 · doi.org
[11] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \?_\?-spaces and their applications, Studia Math. 29 (1968), 275 – 326. · Zbl 0183.40501
[12] Robert H. Lohman, An embedding theorem for separable locally convex spaces, Canad. Math. Bull. 14 (1971), 114 – 120. · Zbl 0209.15002
[13] A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150 – 156. (1 foldout) (Russian).
[14] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901 · doi:10.1017/S0004972700041782 · doi.org
[15] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901 · doi:10.1017/S0004972700041782 · doi.org
[16] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901 · doi:10.1017/S0004972700041782 · doi.org
[17] Sidney A. Morris, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971), 17 – 29. · Zbl 0199.34503 · doi:10.1017/S0004972700046219 · doi.org
[18] Sidney A. Morris, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971), 17 – 29. · Zbl 0199.34503 · doi:10.1017/S0004972700046219 · doi.org
[19] Sidney A. Morris, Free compact abelian groups, Mat. Časopis Sloven. Akad. Vied 22 (1972), 141 – 147. · Zbl 0235.22012
[20] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901 · doi:10.1017/S0004972700041782 · doi.org
[21] Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0251.20001
[22] A. Pełczyński, On the isomorphism of the spaces \? and \?, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 695 – 696. · Zbl 0085.09406
[23] A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces \?(\Omega ) for \Omega without perfect subsets, Studia Math. 18 (1959), 211 – 222. · Zbl 0091.27803
[24] Stephen A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87 – 106. · Zbl 0243.46011 · doi:10.1007/BF01419586 · doi.org
[25] Stephen A. Saxon, Embedding nuclear spaces in products of an arbitrary Banach space, Proc. Amer. Math. Soc. 34 (1972), 138 – 140. · Zbl 0257.46006
[26] Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. · Zbl 0141.30503
[27] T. Terzioğlu, On Schwartz spaces, Math. Ann. 182 (1969), 236 – 242. · Zbl 0179.45501 · doi:10.1007/BF01350326 · doi.org
[28] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.