zbMATH — the first resource for mathematics

Spectral properties of many-body Schrödinger operators with dilatation- analytic interactions. (English) Zbl 0219.47005

47A10 Spectrum, resolvent
47N50 Applications of operator theory in the physical sciences
35J10 Schrödinger operator, Schrödinger equation
47A20 Dilations, extensions, compressions of linear operators
Full Text: DOI
[1] Hepp, K.: Helv. Phys. Acta42, 425 (1969).
[2] Lavine, R.: Commutations and scattering theory, Preprint, Cornell University (1970). · Zbl 0192.61201
[3] Combes, J.M.: Time dependent approach to non-relativistic multi-channel scattering. Nuovo Cimento64, 111 (1969). · Zbl 0181.27604
[4] Dollard, J.: J. Math. Phys.5, 729 (1964).
[5] Buslaev” Matreev, J.: Theoret. Math. Phys. (Russian), 1970.
[6] Corbett, J.V.: Phys. Rev.12, 333 (1970).
[7] Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. math. Phys.22, 269–279 (1971). · Zbl 0219.47011
[8] Combes, J.M.: Relatively compact interactions in many particle systems. Commun. Math. Phys.12, 283 (1969). · Zbl 0174.28304
[9] Hunziker, W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta39, 5, 451–462 (1966). · Zbl 0141.44701
[10] Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0148.12601
[11] Nelson, E.: Analytic vectors. Ann. Math.70, 3 (1959). · Zbl 0091.10704
[12] Steinberg, S.: Arc. for Rat. Mechs. Anal.31 372 (1968). · Zbl 0167.43002
[13] Wolf, F.: On the essential spectrum of partial differential boundary problems. Commun. Pure Appl. Math.12, 211–228 (1959). · Zbl 0087.30501
[14] Simon, B.: On the infinitude or finiteness of the number of bound states of ann-body quantum system, Preprint, Princeton University 1970.
[15] Ichinose, T.: On operators on tensor products of Banach spaces, Preprint, Nagoya University. · Zbl 0215.48902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.