Franks, J. Necessary conditions for stability of diffeomorphisms. (English) Zbl 0219.58005 Trans. Am. Math. Soc. 158, 301-308 (1971). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 124 Documents MSC: 37C75 Stability theory for smooth dynamical systems PDFBibTeX XMLCite \textit{J. Franks}, Trans. Am. Math. Soc. 158, 301--308 (1971; Zbl 0219.58005) Full Text: DOI References: [1] R. Abraham and S. Smale, Nongenericity of \Omega -stability, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 5 – 8. · Zbl 0215.25102 [2] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133 – 163. [3] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. · Zbl 0202.55202 [4] S. Smale, The \Omega -stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, r.I., 1970, pp. 289 – 297. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.