zbMATH — the first resource for mathematics

Conservative Markov processes on a topological space. (English) Zbl 0219.60005

60B05 Probability measures on topological spaces
60J05 Discrete-time Markov processes on general state spaces
60J25 Continuous-time Markov processes on general state spaces
60B11 Probability theory on linear topological spaces
Full Text: DOI
[1] J. Feldman,Subinvariant measures for Markov operators, Duke Math. J.29 (1962), 71–98. · Zbl 0106.33401 · doi:10.1215/S0012-7094-62-02909-5
[2] W. Feller,An introduction to probability theory and its applications, vol. I, 2nd edition, John Wiley, 1957. · Zbl 0077.12201
[3] S. R. Foguel,Existence of invariant measures for Markov processes II, Proc. Amer. Math. Soc.17 (1966), 387–389. · Zbl 0168.16405 · doi:10.1090/S0002-9939-1966-0193673-2
[4] S. R. Foguel,Existence of a \(\sigma\)-finite measure for a Markov process on a locally compact space, Israel J. Math.6 (1968), 1–4. · Zbl 0159.46802 · doi:10.1007/BF02771598
[5] S. R. Foguel,Ergodic decomposition of a topological space, Israel J. Math.,7 (1969), 164–167. · Zbl 0179.08302 · doi:10.1007/BF02771663
[6] S. R. Foguel,The ergodic theory of Markov processes, Van-Nostrand, 1969. · Zbl 0282.60037
[7] S. R. Foguel,Ergodic theory of positive operators on continuous functions, Advances in Math. to appear.
[8] P. R. Halmos,Measure theory, Van-Nostrand, 1950.
[9] S. Horowitz,Markov processes on a locally compact space, Israel J. Math., to appear. · Zbl 0216.47102
[10] E. Nelson,The adjoint Markov process, Duke Math. J.25 (1958), 671–690. · Zbl 0084.13402 · doi:10.1215/S0012-7094-58-02561-4
[11] S. Orey,Strong ratio limit property, Bull. Amer. Math. Soc.67 (1961), 571–574. · Zbl 0109.11801 · doi:10.1090/S0002-9904-1961-10694-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.