zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of Cowell’s method. (English) Zbl 0219.65062

65L06Multistep, Runge-Kutta, and extrapolation methods
Full Text: DOI EuDML
[1] Brouwer, D., andG. M. Clemence: Methods of celestial mechanics, Chap. IV,12 New York: Academic Press 1961. · Zbl 0132.23506
[2] Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math.3, 381--397 (1961). · Zbl 0163.39002 · doi:10.1007/BF01386037
[3] Interpolation and Allied Tables. London: Her Majesty’s Stationery Office 1956.
[4] Kustaanheimo, P., andE. Stiefel: Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik218, 204--219 (1965) · Zbl 0151.34901 · doi:10.1515/crll.1965.218.204
[5] Salzer, H. E.: Trigonometric interpolation and predictor-corrector formulas for numerical integration. Zeitschrift für Angewandte Mathematik und Mechanik42, 403--412 (1962). · Zbl 0111.13002 · doi:10.1002/zamm.19620420906
[6] Stiefel, E., M. Rossler, J. Waldvogel, andC. A. Burdet: Methods of regularization for computing orbits in celestial mechanics. NASA Contractor Report, NASA CR-769 (1967). · Zbl 0178.27602
[7] Szebehely, V.: Theory of orbits, the restricted problem of three bodies, Chap. III and X, 2.5. New York: Academic Press 1967.