×

On efficient computation of the optimization problem arising in the inverse modeling of non-stationary multiphase multicomponent flow through porous media. (English) Zbl 1114.49037

Summary: In this paper we discuss a method of solving inverse problems in non-isothermal multiphase multicomponent flow through porous media. The conceptual model is described by a system of non-linear partial differential equations which involve unknown parameters. These parameters are to be determined using a set of observations at discrete points in space and time by an optimization method. It is based on a reduced Gauss-Newton iteration in combination with an efficient gradient computation which takes advantage of a recently developed efficient numerical simulation technique. A sensitivity analysis is carried out for the optimum parameter set. Numerical experiments are performed for a one dimensional column experiment carried out at the VEGAS, University of Stuttgart, Germany.

MSC:

49N45 Inverse problems in optimal control
65J22 Numerical solution to inverse problems in abstract spaces
76S05 Flows in porous media; filtration; seepage
93C20 Control/observation systems governed by partial differential equations

Software:

DASOPT; MUFTE-UG
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Y. Bard, Nonlinear Parameter Estimation, Academic Press: New York, 1974, p. 341. · Zbl 0345.62045
[2] P. Bastian, Numerical Computation of Multiphase Flows in Porous Media, Habilitationsschrift, Technischen Fakultat der Christian-Albrechts-Universitat Kiel, Kiel, 1999.
[3] P. Bastian and R. Helmig, ”Efficient fully-coupled solution techniques for two-phase flow in porous media: Parallel Multigrid solution and large scale computations,” Adv. Water Resour., vol. 23, pp. 199–216, 1999.
[4] H.G. Bock, Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Bonner Mathematische Schriften, Bonn, 1987, p. 183. · Zbl 0622.65064
[5] J. Carrera and S.P. Neuman, ”Estimation of aquifer parameters under transient and steady state conditions, 1, maximum likelihood method incorporating prior information,” Water Resour. Res., vol. 22, no. 2, pp. 199–210, 1986.
[6] G. Chavent, J. Jaffre, S. Jegou, and J. Liu, ”A symbolic code generator for parameter estimation,” in Proceedings of the SIAM Workshop on Computational Differentiation, SIAM, 1996, pp. 129–136. · Zbl 0868.65085
[7] H. Class, R. Helmig, and P. Bastian, ”Numerical simulation of nonisothermal multiphase multicomponent processes in porous media-1. An efficient solution technique,” Advances in Water Resources, vol. 25, pp. 533–550, 2002.
[8] A. Dieses, ”Numerical methods for optimization problems in water flow and reactive solute transport processes of xenobiotics in soils,” Technical Report SFB Preprint 2001-07, University of Heidelberg, Ph.D. Thesis, 2001. · Zbl 1002.76002
[9] A.E. Dieses, J.P. Schlöder, H.G. Bock, and O. Richter, ”Parameter estimation for nonlinear transport and degradation processes of xenobiotica in soil,” in Scientific Computing in Chemical Engineering II, F. Keil et al. (Eds.), Springer Verlag, 1999, vol. 2, pp. 290–297.
[10] R.E. Ewing, R.D. Lazarov, and Y. Lin, ”Finite volume element approximations of nonlocal in time one-dimensional flows in porous media,” Computing, vol. 64, pp. 157–183, 2000. · Zbl 0969.76052
[11] A. Faerber, ”Wärmetransport in der ungesättigten Bodenzone: Entwicklung einer thermischen in-situ Sanierungstechnologie,” Dissertation, Institut für Wasserbau, Universität Stuttgart, 1997.
[12] S. Finsterle, ”Multiphase inverse modeling: An overview,” in Proceedings, DOE Geothermal Program Review XVI, Berkeley, CA, 1998, pp. 3-3–3-9. · Zbl 0885.76100
[13] S.B. Hazra and V. Schulz, ”Numerical parameter identification in multiphase flow through porous media,” Comput. Visual. Sci., vol. 5, pp. 107–113, 2002. · Zbl 1036.76058
[14] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, Springer, 1997.
[15] R. Helmig, P. Bastian, J. Class, R. Ewing, R. Hinkelmann, H. Huber, H. Jakobs, and R. Sheta, ”Architecture of the modular program system MUFTE-UG for simulating multiphase flow and transport processes in heterogeneous porous media,” Mathematische Geologie, 1996.
[16] R. Helmig, H. Class, A. Faerber, and M. Emmert, ”Heat transport in the unsaturated zone- comparison of experimental results and numerical simulations,” J. of Hydr. Reas., vol. 36, no.6, 1998.
[17] P. Knabner and B. Igler, ”Structural identification of nonlinear coefficient functions in transport processes through porous media,” in Lectures on Applied Mathematics, Bungartz, Hans-Joachim et al. (Eds.), Springer: Berlin, 1999, pp. 157–175. · Zbl 1049.76603
[18] J.B. Kool, J.C. Parker, and M. Th. Van Genuchten, ”Parameter estimation for unsaturated flow and transport models-A review,” J. of Hydrology, vol. 91, pp. 255–293, 1987.
[19] K. Levenberg, ”A method for the solution of certain nonlinear problems in least squares,” Q. Appl. Math., vol. 2, pp. 164–168, 1944. · Zbl 0063.03501
[20] D.W. Marquardt, ”An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963. · Zbl 0112.10505
[21] L. Petzold, J.B. Rosen, P.E. Gill, L.O. Jay, and K. Park, ”Numerical optimal control of parabolic PDEs using DASOPT,” in Large Scale Optimization with Applications, Part II, Biegler, Coleman, Conn and Santosa (Eds.), Springer, 1997. · Zbl 0884.65065
[22] J. Schlöder, ”Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung,” Bonner Mathematische Schriften 187, 1988. · Zbl 0639.65036
[23] V. Schulz, H.G. Bock, and M. Steinbach, ”Exploiting invariants in the numerical solution of multipoint boundary value problems for DAEs,” SIAM J. Sci. Comput., vol. 19, no. 2, pp. 440–467, 1998. · Zbl 0947.65096
[24] V. Schulz, ”Solving discretized optimization problems by partially reduced SQP methods,” Comput. Visul. Sci., vol. 1, pp. 83–96, 1998. · Zbl 0970.65066
[25] Stefan Finsterle and Karsten Pruess, ”Solving the estimation-identification problem in two-phase flow modeling,” Water Resour. Res., vol. 31, no. 4, pp. 913–924, 1995.
[26] M.T. van Genuchten, ”A closed form equations for predicting the hydraulic conductivity of unsaturated soils,” Soil Sci. Soc. Am. J., vol. 44, no. 5, pp. 892–898, 1980.
[27] W.G. Yeh, ”Review of Parameter estimation procedures in groundwater hydrology: The inverse problem,” Water Resour. Res., vol. 22, pp. 95–108, 1986.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.