×

zbMATH — the first resource for mathematics

The family of all recursively enumerable classes of finite sets. (English) Zbl 0221.02022

MSC:
03D25 Recursively (computably) enumerable sets and degrees
03D55 Hierarchies of computability and definability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. I. Appel and T. G. McLaughlin, On properties of regressive sets, Trans. Amer. Math. Soc. 115 (1965), 83 – 93. · Zbl 0192.05202
[2] J. C. E. Dekker, Infinite series of isols, Proc. Sympos. Pure Math., Vol. V, American Mathematical Society, Providence, R.I., 1962, pp. 77 – 96. · Zbl 0171.27001
[3] J. C. E. Dekker and J. Myhill, Some theorems on classes of recursively enumerable sets, Trans. Amer. Math. Soc. 89 (1958), 25 – 59. · Zbl 0083.00302
[4] Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. · Zbl 0047.00703
[5] Marian Boykan Pour-El and Hilary Putnam, Recursively enumerable classes and their application to recursive sequences of formal theories, Arch. Math. Logik Grundlagenforsch 8 (1965), 104 – 121 (1965). · Zbl 0242.02046 · doi:10.1007/BF01976264 · doi.org
[6] Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967.
[7] C. E. M. Yates, Recursively enumerable sets and retracing functions, Z. Math. Logik Grundlagen Math. 8 (1962), 331 – 345. · Zbl 0111.00904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.