×

zbMATH — the first resource for mathematics

Algebras without nilpotent elements. I.II. (English. Russian original) Zbl 0221.17004
Algebra Logic 8(1969), 103-122, 123-137 (1970); translation from Algebra Logika 8, 181-214, 215-240 (1969).

MSC:
17A30 Nonassociative algebras satisfying other identities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Weierstrass, ,”Zur Theorie der aus n Haupteinheiten gebildeten complexen Grossen,” Gott. Nachr. (1884). · JFM 16.0330.01
[2] R. Dedekind, ,”Zur Theorie der aus n Haupteinheiten gebildeten complexen Grossen,” Gott. Nachr. (1885). · JFM 17.0365.01
[3] F. Molien, ,”Ueber Systeme höherer complexer Zahlen,” Math. Ann., XLI, 83–156 (1893). · JFM 24.0347.01
[4] E. Cartan, ,”Les groupes bilineaires et les systemes de nombres complexes,” Ann. Fac. Sci., Toulouse (1898). · JFM 29.0097.03
[5] J. Wedderburn, ,”On hypercomplex numbers,” Proc. London Math. Soc. (2), VI,349–352 (1908). · JFM 39.0139.01
[6] E. Artin, ,”Zur Theorie der hyperkomplexen Zahlen,” Abh. Math. Sem. Univ. Hamburg,5, 251–260 (1927). · JFM 53.0114.03 · doi:10.1007/BF02952526
[7] A. Albert, ,”The structure of right alternative algebras,” Ann. Math.,59, 403–417 (1954). · Zbl 0055.26501 · doi:10.2307/1969709
[8] E. Kleinfeld, ,”Simple alternative rings,” Ann. Math.,58, 544–547 (1953). · Zbl 0051.02503 · doi:10.2307/1969753
[9] E. Kleinfeld, ,”Generalization of a theorem on simple alternative rings,” Portugal Math.,14, Nos. 3–4, 91–94 (1955). · Zbl 0066.28402
[10] M. Zorn, ,”Theorie der alternativen Ringe,” Abh. Math. Sem. Univ. Hamburg,8, 123–147 (1930). · JFM 56.0140.01 · doi:10.1007/BF02940993
[11] L. A. Skornyakov, ,”Alternative division rings,” Ukrainskii Matematicheskii Zhurnal,2, No. 3, 94–99 (1950). · Zbl 0045.32201
[12] L. A. Skornyakov, ,”Rightalternative division rings,” Izvestiya AN SSSR, Ser. Matematicheskaya,15, 177–184 (1951).
[13] K. A. Zhevlakov, ,”Alternative Artin rings,” Algebra i Logika, Seminar,5, No. 3, 11–36 (1966). · Zbl 0262.17011
[14] A. I. Shirshov, ,”Some problems of the theory of rings close to associative ones,” UMN, XIII, 6(94), 3–20 (1958). · Zbl 0088.03202
[15] I. N. Herstein, ,”Anelli alternativi ed algebre di composizione,” Rendiconti di Matemtica (3–4), 23, 364–393. · Zbl 0135.07305
[16] A. I. Gerchikov, ,”Rings decomposable into a direct sum of division rings,” Matem. Sb., 7 (49):3, 591–597 (1940).
[17] A. I. Mal’tsev, Fundamentals of Linear Algebra [in Russian], Fiz.-Mat. Inst., Moscow (1956).
[18] R. Baer, Lineal Algebra and Projective Geometry [Russian translation], IL, Moscow (1955).
[19] A. G. Kurosh, Lectures on General Algebra [in Russian], Physico-Math. Inst., Moscow (1956). · Zbl 0121.25901
[20] A. I. Mal’tsev (Malcev), ,”On the immersion of an algebraic ring into a field,” Math. Ann.,113, 686–691 (1937). · Zbl 0015.38801 · doi:10.1007/BF01571659
[21] B. H. Neumann, ,”Embedding non-associative rings into division rings,” Proc. London Math. Soc., (3), 1, 241–256 (1951). · Zbl 0043.03602 · doi:10.1112/plms/s3-1.1.241
[22] L. A. Bokut’, ,”Embedding of algebras into algebraically closed algebras,” DAN SSSR,145, No. 5, 963–964 (1962). · Zbl 0173.02903
[23] A. G. Kurosh, ,”Nonassociative free algebras and free products of algebras,” Matem. Sb., 20 (62):2, 239–262 (1947). · Zbl 0041.16803
[24] A. I. Shirshov, ,”Subalgebras of free commutative and free anticommutative algebras,” Mat. Sb., 34 (76):1, 81–88 (1954). · Zbl 0055.02703
[25] A. I. Shirshov, ,”Some algorithmic problems of Lie algebras,” Sibirskii Matem. Zh.,3, No. 1, 132–137 (1962). · Zbl 0104.26004
[26] P. M. Cohn, ,”On a class of simple rings,” Matematika, Sbornik Perev. in. Statei,5, No. 1, 32–45 (1961).
[27] Yu. M. Ryabukhin, ,”On overnilpotent and special radicals,” Issled. po Algebre i Matanalizu (Kishinev), 65–72 (1965).
[28] Yu. M. Ryabukhin, ,”Radicals in categories,” Matematicheskie Issledovaniya (Kishinev), II, No. 3, 107–165 (1967). · Zbl 0248.18013
[29] L. A. Bokut’, ,”Some embedding theorems for rings and semigroups,” Sibirskii Matem. Zh.,4, No. 3, 500–518 (1963).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.