zbMATH — the first resource for mathematics

Perturbation d’une matrice hermitienne ou normale. (Perturbation of a hermitian on normal matrix). (French) Zbl 0221.65072

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F99 Numerical linear algebra
Full Text: DOI EuDML
[1] Chatelin-Laborde, F.: Perturbation d’une matrice hermitienne ou normale. Application au calcul des valeurs propres. Colloque d’Analyse Numérique, Super Besse (1970).
[2] Davis, C.: The rotation of eigenvectors by a perturbation. J. Math. Anal. Appl.6, 159-173 (1963). · Zbl 0115.10403
[3] Galligani, I.: A comparison of methods for computing the eigenvalues and eigenvectors of a matrix. Euratom 1968.
[4] Gavurin, M. K.: Approximate determination of proper values. Amer. Math. Soc. Transl.16, 385-388 (1960). · Zbl 0100.31901
[5] Golub, G. H.: Bounds for eigenvalues of tri-diagonal symmetric matrices computed with theLR method. Math. Comp. J.16, 438-445 (1962). · Zbl 0107.33402
[6] Householder, A. S.: The theory of matrices in numerical analysis. New York: Blaisdell Publishing Company 1964. · Zbl 0161.12101
[7] Kato, T.: On the upper and lower bounds of eigenvalues. J. Phys. Soc. Japan4, 334-339 (1949).
[8] ?: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0148.12601
[9] Wilkinson, J. H.: Rigorous error bounds for computed eigensystems. Comp. J.4, 230-241 (1961). · Zbl 0109.34504
[10] ?: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965. · Zbl 0258.65037
[11] Yoshida, K.: Functional analysis. Berlin-Göttingen-Heidelberg: Springer 1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.